Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Overview

Symbolic Learning to Optimize

This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Introduction

Recent studies on Learning to Optimize (L2O) suggest a promising path to automating and accelerating the optimization procedure for complicated tasks. Existing L2O models parameterize optimization rules by neural networks, and learn those numerical rules via meta-training. However, they face two common pitfalls: (1) scalability: the numerical rules represented by neural networks create extra memory overhead for applying L2O models, and limits their applicability to optimizing larger tasks; (2) interpretability: it is unclear what each L2O model has learned in its black-box optimization rule, nor is it straightforward to compare different L2O models in an explainable way. To avoid both pitfalls, this paper proves the concept that we can ``kill two birds by one stone'', by introducing the powerful tool of symbolic regression to L2O. In this paper, we establish a holistic symbolic representation and analysis framework for L2O, which yields a series of insights for learnable optimizers. Leveraging our findings, we further propose a lightweight L2O model that can be meta-trained on large-scale problems and outperformed human-designed and tuned optimizers. Our work is set to supply a brand-new perspective to L2O research.

Our approach:

First train a neural network (LSTM) based optimizer, then leverage the symbolic regression tool to trouble shoot and analyze the neural network based optimizer. The yielded symbolic rule serve as a light weight light-weight surrogate of the original optimizer.

Our main findings:

Example of distilled equations from DM model:

Example of distilled equations from RP model (they are simpler than the DM surrogates, and yet more effective for the optimization task):

Distilled symbolic rules fit the optimizer quite well:

The distilled symbolic rule and underlying rules

Distilled symbolic rules perform same optimization task well, compared with the original numerical optimizer:

The light weight symbolic rules are able to be meta-tuned on large scale (ResNet-50) optimizee and get good performance:

ss large scale optimizee

The symbolic regression passed the sanity checks in the optimization tasks:

Installation Guide

The installation require no special packages. The tensorflow version we adoped is 1.14.0, and the PyTorch version we adopted is 1.7.1.

Training Guide

The three files:

torch-implementation/l2o_train_from_scratch.py

torch-implementation/l2o_symbolic_regression_stage_2_3.py

torch-implementation/l2o_evaluation.py

are pipline scripts, which integrate the multi-stage experiments. The detailed usages are specified within these files. We offer several examples below.

  • In order to train a rnn-prop model from scratch on mnist classification problem setting with 200 epochs, each epoch with length 200, unroll length 20, batch size 128, learning rate 0.001 on GPU-0, run:

    python l2o_train_from_scratch.py -m tras -p mni -n 200 -l 200 -r 20 -b 128 -lr 0.001 -d 0

  • In order to fine-tune an L2O model on the CNN optimizee with 200 epochs, each epoch length 1000, unroll length 20, batch size 64, learning rate 0.001 on GPU-0, first put the .pth model checkpoint file (the training script above will automatically save it in a new folder under current directory) under the first (0-th, in the python index) location in __WELL_TRAINED__ specified in torch-implementation/utils.py , then run the following script:

    python l2o_train_from_scratch.py -m tune -pr 0 -p cnn -n 200 -l 1000 -r 20 -b 64 -lr 0.001 -d 0

  • In order to generate data for symbolic regression, if desire to obtain 50000 samples evaluated on MNIST classification problem, with optimization trajectory length of 300 steps, using GPU-3, then run:

    python l2o_evaluation.py -m srgen -p mni -l 300 -s 50000 -d 3

  • In order to distill equation from the previously saved offline SR dataset, check and run: torch-implementation/sr_train.py

  • In order to fine-tune SR equation, check and run: torch-implementation/stage023_mid2021_update.py

  • In order to convert distilled symbolic equation into latex readable form, check and run: torch-implementation/sr_test_get_latex.py.py

  • In order to calculate how good the symbolic is fitting the original model, we use the R2-scores; to compute it, check and run: torch-implementation/sr_test_cal_r2.py

  • In order to train and run the resnet-class optimizees, check and run: torch-implementation/run_resnet.py

There are also optional tensorflow implementations of L2O, including meta-training the two benchmarks used in this paper: DM and Rnn-prop L2O. However, all steps before generating offline datasets in the pipline is only supportable with torch implementations. To do symbolic regression with tensorflow implementation, you need to manually generate records (an .npy file) of shape [N_sample, num_feature+1], which concatenate the num_feature dimensional x (symbolic regresison input) and 1 dimensional y (output), containing N_sample samples. Once behavior dataset is ready, the following steps can be shared with torch implementation.

  • In order to train the tensorflow implementation of L2O, check and run: tensorflow-implementation/train_rnnprop.py, tensorflow-implementation/train_dm.py

  • In order to evaluate the tensorflow implementation of L2O and generate offline dataset for symbolic regression, check and run: tensorflow-implementation/evaluate_rnnprop.py, tensorflow-implementation/evaluate_dm.py.

Other hints

Meta train the DM/RP/RP_si models

run the train_optimizer() functionin torch-implementation/meta.py

Evaluate the optimization performance:

run theeva_l2o_optimizer() function in torch-implementation/meta.py

RP model implementations:

TheRPOptimizer in torch-implementation/meta.py

RP_si model implementations:

same as RP, set magic=0; or more diverse input can be enabled by setting grad_features="mt+gt+mom5+mom99"

DM model implementations:

DMOptimizer in torch-implementation/utils.py

SR implementations:

torch-implementation/sr_train.py

torch-implementation/sr_test_cal_r2.py

torch-implementation/sr_test_get_latex.py

other SR options and the workflow:

srUtils.py

Citation

comming soon.

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022