Audio Visual Emotion Recognition using TDA

Overview

Audio Visual Emotion Recognition using TDA

RAVDESS database with two datasets analyzed: Video and Audio dataset:

Audio-Dataset: https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio

Video-Dataset: https://zenodo.org/record/1188976#.X7yio2hKjIU

The Final Master project PDF document is available here.

Folder Video_Dataset:

Dataset used is available in this url https://zenodo.org/record/1188976#.X7yio2hKjIU The algorithm works in this order:

  1. delaunay_construction.m: The first step of the algorithm in order to build the Delaunay triangulation in every video associated from dataset, remind that we have videos of 24 people and for each person 60 videos associated to 8 emotions. The first step is to defines the pathdata where it is the dataset address, that it is in format csv with the landmark point of the face. The coordinate of point X is is between position 2:297 and Y from 138:416 return the Delaunay_base, the struct that we will use in the code.

  2. complex_filtration.m: After get the delaunay_construction, we apply complex_filtration(Delaunay). The input is the Delaunay triangulation, in this code we built the complexes using the triangulation, taking the edges which form the squares and used them to form the square in every frame. We are working with 9 frames and this function calls the filtration function. Then, this function the return the complex asociated to each video, and the index position where each 3-cell is formed in the complex

2.1. filtrations.m This function obtains 8 border simplicial complexes filtered, from 4 view directions, 2 by each direction.We applied a set of function in order to get the different complex, as you can see the funcion return Complex X in the direction of axis X, Complex X in direction of Y, Complex XY, Complex YX in diagonal direction and the same complex with the order inverted.

2.2. complex_wtsquare.m In this function we are going to split the complexes which form every cell to see the features which born and died in the same square on the complex.

  1. WORKFLOW.m One time that we have the complexes build, we are going to apply the Incremental Algorithm (Persistence_new) used in this thesis, the Incremental algorithm was implemented in C++ using differente topology libraries which offer this language. Then we get the barcode or persistence diagram associated to each filter complex obtained at begining. In this function we apply also the function (per_entropy) to summarise the information from the persistence diagram

Load each complex and its index and apply:

3.1 complex2matrix.py: converts the complex obtained for the ATR model applied in matricial way as we explained on the thesis(page 50).

3.2 Persistence_new: ATR model defined in C++ to calculate the persisten homology and get the barcode or persistence diagrams associated with each filtration of the complex. The psuedo-code of the algorithm you will find on the thesis.

3.3 create_matrix.m: Built the different matrix based on persistence value to classify.

  1. experiment: the first experiment done based on the entropy values of video, but it sets each filtration compex that we get, then for that we worked with vector of eight elements associated to each filtration. Later this matrix is splitted in training and test set in order to use APP Classificator from Matlab and gets the accuracy.

  2. experiment3: Experiment that construct the matrix with the information of each persisten value associate with one filtration of the complex calculated. Later this matrix is splitted in training and test set in order to use APP Classificator from Matlab and gets the accuracy.

  3. feature24_vector.m: experiment done considering a vector of 24 features for each person. in this experiment we dont get good results.

Folder Audio Dataset:

In this url yo can finde the Audio-Dataset used for this implementation, the formal of the files are in .wav: https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio

Experiment 1

  1. work_flow.py focuses on the first experiment, load data that will be used in the script, and initialize the dataframe to fill.

1.1 test.py using function emotions to get the embedder and duration in seconds of each audio signal. Read the audio and create the time array (timeline), resample the signal, get the optimal parameter delay, apply the emmbedding algorithm

1.2 get_parameters.py function to get the optimal parameter for taken embedding, which contains datDelayInformation for mutual information, false_nearest_neighours for embedding dimension.

1.3 TakensEmbedding: This function returns the Takens embedding of data with a delay into a dimension

1.4 per_entropy.py: Computes the persistence entropy of a set of intervals according to the diagrama obtained.

1.5 get_diagramas.py used to apply Vietoris-Rips filter and get the persisten_entropy values.

  1. machine_learning.py is used to define classification techniques in the set of entropy values. Create training and test splits. Import the KNeighborsClassifier from library. The parameter K is to plot in graph with corresponding error rate for dataset and calculate the mean of error for all the predicted values where K ranges from 1 to 40.

Experment 2

  1. Work_flow2.py: Second experiment, using function emotions_second to obtain the resampled signal, get_diag2 from test.py to calculates the Vietoris-Rips filter.

  2. machine_learning_second: To construct a distance matrix of persistence diagrams (Bottleneck distance). Upload the csv prueba5.csv that contains the label of the emotion associated to each rows of the matrix. Create the fake data matrix: just the indices of the timeseries. Import the KNeighborsClassifier from library. For evaluating the algorithm, confusion matrix, precision, recall and f1 score are the most commonly used. Testing different classifier to see what is the best one. GaussianNB; DecisionTreeClassifier, knn and SVC.

4.1 my_dist: To get the distance bottleneck between diagrams, function that we use to built the matrix of distance, that will be the input of the KNN algorithm.

Classification folder

In this folder, the persistent entropy matrixes and classification experiments using neural networks for video-only and audiovideo datasets are provided.

Owner
Combinatorial Image Analysis research group
Combinatorial Image Analysis research group
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022