Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

Overview

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

Overall pipeline of OCN.

Paper Link: [arXiv] [AAAI official paper]

If you find our work or the codebase inspiring and useful to your research, please cite

@article{yuan2022OCN_HOI,
  title={Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics},
  author={Yuan, Hangjie and Wang, Mang and Ni, Dong and Xu, Liangpeng},
  journal={arXiv preprint arXiv:2202.00259},
  year={2022}
}

Dataset preparation

1. HICO-DET

HICO-DET dataset can be downloaded here. After finishing downloading, unpack the tarball (hico_20160224_det.tar.gz) to the data directory.

Instead of using the original annotations files, we use the annotation files provided by the PPDM authors. The annotation files can be downloaded from here. The downloaded annotation files have to be placed as follows.

qpic
 |─ data
 │   └─ hico_20160224_det
 |       |─ annotations
 |       |   |─ trainval_hico.json
 |       |   |─ test_hico.json
 |       |   └─ corre_hico.npy
 :       :

2. V-COCO

First clone the repository of V-COCO from here, and then follow the instruction to generate the file instances_vcoco_all_2014.json. Next, download the prior file prior.pickle from here. Place the files and make directories as follows.

qpic
 |─ data
 │   └─ v-coco
 |       |─ data
 |       |   |─ instances_vcoco_all_2014.json
 |       |   :
 |       |─ prior.pickle
 |       |─ images
 |       |   |─ train2014
 |       |   |   |─ COCO_train2014_000000000009.jpg
 |       |   |   :
 |       |   └─ val2014
 |       |       |─ COCO_val2014_000000000042.jpg
 |       |       :
 |       |─ annotations
 :       :

For our implementation, the annotation file have to be converted to the HOIA format. The conversion can be conducted as follows.

PYTHONPATH=data/v-coco \
        python convert_vcoco_annotations.py \
        --load_path data/v-coco/data \
        --prior_path data/v-coco/prior.pickle \
        --save_path data/v-coco/annotations

Note that only Python2 can be used for this conversion because vsrl_utils.py in the v-coco repository shows a error with Python3.

V-COCO annotations with the HOIA format, corre_vcoco.npy, test_vcoco.json, and trainval_vcoco.json will be generated to annotations directory.

Dependencies and Training

To simplify the steps, we combine the installation of externel dependencies and training into one '.sh' file. You can directly run the codes after rightly preparing the dataset.

# Training on HICO-DET
bash train_hico.sh
# Training on V-COCO
bash train_vcoco.sh

Note that you can refer to the publicly available codebase for the preparation of two datasets.

Pre-trained parameters

OCN uses COCO pretrained models for fair comparisons with previous methods. The pretrained models can be downloaded from DETR repository.

For HICO-DET, you can convert the pre-trained parameters with the following command.

python convert_parameters.py \
        --load_path /PATH/TO/PRETRAIN \
        --save_path /PATH/TO/SAVE

For V-COCO, you can convert the pre-trained parameters with the following command.

python convert_parameters.py \
        --load_path /PATH/TO/PRETRAIN \
        --save_path /PATH/TO/SAVE \
        --dataset vcoco \

Evaluation

The mAP on HICO-DET under the Full set, Rare set and Non-Rare Set will be reported during the training process. Or you can evaluate the performance using commands below:

python main.py \
    --pretrained /PATH/TO/PRETRAINED_MODEL \
    --output_dir /PATH/TO/OUTPUT \
    --hoi \
    --dataset_file hico \
    --hoi_path /PATH/TO/data/hico_20160224_det \
    --num_obj_classes 80 \
    --num_verb_classes 117 \
    --backbone resnet101 \
    --num_workers 4 \
    --batch_size 4 \
    --exponential_hyper 1 \
    --exponential_loss \
    --semantic_similar_coef 1 \
    --verb_loss_type focal \
    --semantic_similar \
    --OCN \
    --eval \

The results for the official evaluation of V-COCO must be obtained by the generated pickle file of detection results.

python generate_vcoco_official.py \
        --param_path /PATH/TO/CHECKPOINT \
        --save_path /PATH/TO/SAVE/vcoco.pickle \
        --hoi_path /PATH/TO/VCOCO/data/v-coco \
        --batch_size 4 \
        --OCN \

Then you should run following codes after modifying the path to get the final performance:

python datasets/vsrl_eval.py

Results

Below we present the results and links for downloading corresponding parameters and logs: (The checkpoints can produce higher results than what are reported in the paper.) We will soon update this table.

Owner
A Ph.D. candidate and a realistic idealist.
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022