Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

Overview

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

Overall pipeline of OCN.

Paper Link: [arXiv] [AAAI official paper]

If you find our work or the codebase inspiring and useful to your research, please cite

@article{yuan2022OCN_HOI,
  title={Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics},
  author={Yuan, Hangjie and Wang, Mang and Ni, Dong and Xu, Liangpeng},
  journal={arXiv preprint arXiv:2202.00259},
  year={2022}
}

Dataset preparation

1. HICO-DET

HICO-DET dataset can be downloaded here. After finishing downloading, unpack the tarball (hico_20160224_det.tar.gz) to the data directory.

Instead of using the original annotations files, we use the annotation files provided by the PPDM authors. The annotation files can be downloaded from here. The downloaded annotation files have to be placed as follows.

qpic
 |─ data
 │   └─ hico_20160224_det
 |       |─ annotations
 |       |   |─ trainval_hico.json
 |       |   |─ test_hico.json
 |       |   └─ corre_hico.npy
 :       :

2. V-COCO

First clone the repository of V-COCO from here, and then follow the instruction to generate the file instances_vcoco_all_2014.json. Next, download the prior file prior.pickle from here. Place the files and make directories as follows.

qpic
 |─ data
 │   └─ v-coco
 |       |─ data
 |       |   |─ instances_vcoco_all_2014.json
 |       |   :
 |       |─ prior.pickle
 |       |─ images
 |       |   |─ train2014
 |       |   |   |─ COCO_train2014_000000000009.jpg
 |       |   |   :
 |       |   └─ val2014
 |       |       |─ COCO_val2014_000000000042.jpg
 |       |       :
 |       |─ annotations
 :       :

For our implementation, the annotation file have to be converted to the HOIA format. The conversion can be conducted as follows.

PYTHONPATH=data/v-coco \
        python convert_vcoco_annotations.py \
        --load_path data/v-coco/data \
        --prior_path data/v-coco/prior.pickle \
        --save_path data/v-coco/annotations

Note that only Python2 can be used for this conversion because vsrl_utils.py in the v-coco repository shows a error with Python3.

V-COCO annotations with the HOIA format, corre_vcoco.npy, test_vcoco.json, and trainval_vcoco.json will be generated to annotations directory.

Dependencies and Training

To simplify the steps, we combine the installation of externel dependencies and training into one '.sh' file. You can directly run the codes after rightly preparing the dataset.

# Training on HICO-DET
bash train_hico.sh
# Training on V-COCO
bash train_vcoco.sh

Note that you can refer to the publicly available codebase for the preparation of two datasets.

Pre-trained parameters

OCN uses COCO pretrained models for fair comparisons with previous methods. The pretrained models can be downloaded from DETR repository.

For HICO-DET, you can convert the pre-trained parameters with the following command.

python convert_parameters.py \
        --load_path /PATH/TO/PRETRAIN \
        --save_path /PATH/TO/SAVE

For V-COCO, you can convert the pre-trained parameters with the following command.

python convert_parameters.py \
        --load_path /PATH/TO/PRETRAIN \
        --save_path /PATH/TO/SAVE \
        --dataset vcoco \

Evaluation

The mAP on HICO-DET under the Full set, Rare set and Non-Rare Set will be reported during the training process. Or you can evaluate the performance using commands below:

python main.py \
    --pretrained /PATH/TO/PRETRAINED_MODEL \
    --output_dir /PATH/TO/OUTPUT \
    --hoi \
    --dataset_file hico \
    --hoi_path /PATH/TO/data/hico_20160224_det \
    --num_obj_classes 80 \
    --num_verb_classes 117 \
    --backbone resnet101 \
    --num_workers 4 \
    --batch_size 4 \
    --exponential_hyper 1 \
    --exponential_loss \
    --semantic_similar_coef 1 \
    --verb_loss_type focal \
    --semantic_similar \
    --OCN \
    --eval \

The results for the official evaluation of V-COCO must be obtained by the generated pickle file of detection results.

python generate_vcoco_official.py \
        --param_path /PATH/TO/CHECKPOINT \
        --save_path /PATH/TO/SAVE/vcoco.pickle \
        --hoi_path /PATH/TO/VCOCO/data/v-coco \
        --batch_size 4 \
        --OCN \

Then you should run following codes after modifying the path to get the final performance:

python datasets/vsrl_eval.py

Results

Below we present the results and links for downloading corresponding parameters and logs: (The checkpoints can produce higher results than what are reported in the paper.) We will soon update this table.

Owner
A Ph.D. candidate and a realistic idealist.
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022