Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Overview

Monk - A computer vision toolkit for everyone Tweet

Version Build_Status


Why use Monk

  • Issue: Want to begin learning computer vision

    • Solution: Start with Monk's hands-on study roadmap tutorials
  • Issue: Multiple libraries hence multiple syntaxes to learn

    • Solution: Monk's one syntax to rule them all - pytorch, keras, mxnet, etc
  • Issue: Tough to keep track of all the trial projects while participating in a deep learning competition

    • Solution: Use monk's project management and work on multiple prototyping experiments
  • Issue: Tough to set hyper-parameters while training a classifier

    • Solution: Try out hyper-parameter analyser to find the right fit
  • Issue: Looking for a library to build quick solutions for your customer

    • Solution: Train, Infer and deploy with monk's low-code syntax


Create real-world Image Classification applications

Medical Domain Fashion Domain Autonomous Vehicles Domain
Agriculture Domain Wildlife Domain Retail Domain
Satellite Domain Healthcare Domain Activity Analysis Domain

...... For more check out the Application Model Zoo!!!!



How does Monk make image classification easy

  • Write less code and create end to end applications.
  • Learn only one syntax and create applications using any deep learning library - pytorch, mxnet, keras, tensorflow, etc
  • Manage your entire project easily with multiple experiments


For whom this library is built

  • Students
    • Seamlessly learn computer vision using our comprehensive study roadmaps
  • Researchers and Developers
    • Create and Manage multiple deep learning projects
  • Competiton participants (Kaggle, Codalab, Hackerearth, AiCrowd, etc)
    • Expedite the prototyping process and jumpstart with a higher rank


Table of Contents




Sample Showcase - Quick Mode

Create an image classifier.

#Create an experiment
ptf.Prototype("sample-project-1", "sample-experiment-1")

#Load Data
ptf.Default(dataset_path="sample_dataset/", 
             model_name="resnet18", 
             num_epochs=2)
# Train
ptf.Train()

Inference

predictions = ptf.Infer(img_name="sample.png", return_raw=True);

Compare Experiments

#Create comparison project
ctf.Comparison("Sample-Comparison-1");

#Add all your experiments
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
   
# Generate statistics
ctf.Generate_Statistics();



Installation

  • CUDA 9.0          : pip install -U monk-cuda90
  • CUDA 9.0          : pip install -U monk-cuda92
  • CUDA 10.0        : pip install -U monk-cuda100
  • CUDA 10.1        : pip install -U monk-cuda101
  • CUDA 10.2        : pip install -U monk-cuda102
  • CPU (+Mac-OS) : pip install -U monk-cpu
  • Google Colab   : pip install -U monk-colab
  • Kaggle              : pip install -U monk-kaggle

For More Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

General

  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines
  • Python pip packaging support

Backend Support

  • Tensorflow 2.0 provision support with v1
  • Tensorflow 2.0 complete
  • Chainer

External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions


Connect with the project contributors



Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Owner
Tessellate Imaging
Computer Vision and Deep Learning Consultance and Development
Tessellate Imaging
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023