Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Overview

Understanding Minimum Bayes Risk Decoding

This repo provides code and documentation for the following paper:

Müller and Sennrich (2021): Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

@inproceedings{muller2021understanding,
      title={Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation}, 
      author = {M{\"u}ller, Mathias  and
      Sennrich, Rico},
      year={2021},
      eprint={2105.08504},
      booktitle = "Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)"
}

Basic Setup

Clone this repo in the desired place:

git clone https://github.com/ZurichNLP/understanding-mbr
cd understanding-mbr

then proceed to install software before running any experiments.

Install required software

Create a new virtualenv that uses Python 3. Please make sure to run this command outside of any virtual Python environment:

./scripts/create_venv.sh

Important: Then activate the env by executing the source command that is output by the shell script above.

Download and install required software:

./scripts/download.sh

The download script makes several important assumptions, such as: your OS is Linux, you have CUDA 10.2 installed, you have access to a GPU for training and translation, your folder for temp files is /var/tmp. Edit the script before running it to fit to your needs.

Running experiments in general

Definition of "run"

We define a "run" as one complete experiment, in the sense that a run executes a pipeline of steps. Every run is completely self-contained: it does everything from downloading the data until evaluation of a trained model.

The series of steps executed in a run is defined in

scripts/tatoeba/run_tatoeba_generic.sh

This script is generic and will never be called on its own (many variables would be undefined), but all our scripts eventually call this script.

SLURM jobs

Individual steps in runs are submitted to a SLURM system. The generic run script:

scripts/tatoeba/run_tatoeba_generic.sh

will submit each individual step (such as translation, or model training) as a separate SLURM job. Depending on the nature of the task, the scripts submits to a different cluster, or asks for different resources.

IMPORTANT: if

  • you do not work on a cluster that uses SLURM for job management,
  • your cluster layout, resource naming etc. is different

you absolutely need to modify or replace the generic script scripts/tatoeba/run_tatoeba_generic.sh before running anything. If you do not use SLURM at all, it might be possible to just replace calls to scripts/tatoeba/run_tatoeba_generic.sh with scripts/tatoeba/run_tatoeba_generic_no_slurm.sh.

scripts/tatoeba/run_tatoeba_generic_no_slurm.sh is a script we provide for convenience, but have not tested it ourselves. We cannot guarantee that it runs without error.

Dry run

Before you run actual experiments, it can be useful to perform a dry run. Dry runs attempt to run all commands, create all files etc. but are finished within minutes and use CPU only. Dry runs help to catch some bugs (such as file permissions) early.

To dry-run a baseline system for the language pair DAN-EPO, run:

./scripts/tatoeba/dry_run_baseline.sh

Single (non-dry!) example run

To run the entire pipeline (downloading data until evaluation of trained model) for a single language pair from Tatoeba, run

./scripts/tatoeba/run_baseline.sh

This will train a model for the language pair DAN-EPO, but also execute all steps before and after model training.

Start a certain group of runs

It is possible to submit several runs at the same time, using the same shell script. For instance, to run all required steps for a number of medium-resource language pairs, run

./scripts/tatoeba/run_mediums.sh

Recovering partial runs

Steps within a run pipeline depend on each other (SLURM sbatch --afterok dependency in most cases). This means that if a job X fails, subsequent jobs that depend on X will never start. If you attempt to re-run completed steps they exit immediately -- so you can always re-run an entire pipeline if any step fails.

Reproducing the results presented in our paper in particular

Training and evaluating the models

To create all models and statistics necessary to compare MBR with different utility functions:

scripts/tatoeba/run_compare_risk_functions.sh

To reproduce experiments on domain robustness:

scripts/tatoeba/run_robustness_data.sh

To reproduce experiments on copy noise in the training data:

scripts/tatoeba/run_copy_noise.sh

Creating visualizations and result tables

To reproduce exactly the tables and figures we show in the paper, use our Google Colab here:

https://colab.research.google.com/drive/1GYZvxRB1aebOThGllgb0teY8A4suH5j-?usp=sharing

This is possible only because we have hosted the results of our experiments on our servers and Colab can retrieve files from there.

Browse MBR samples

We also provide examples for pools of MBR samples for your perusal, as HTML files that can be viewed in any browser. The example HTML files are created by running the following script:

./scripts/tatoeba/local_html.sh

and are available at the following URLs (Markdown does not support clickable links, sorry!):

Domain robustness

language pair domain test set link
DEU-ENG it https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.it.html
DEU-ENG koran https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.koran.html
DEU-ENG law https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.law.html
DEU-ENG medical https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.medical.html
DEU-ENG subtitles https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.subtitles.html

Copy noise in training data

language pair amount of copy noise link
ARA-DEU 0.001 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.001.slice-test.html
ARA-DEU 0.005 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.005.slice-test.html
ARA-DEU 0.01 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.01.slice-test.html
ARA-DEU 0.05 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.05.slice-test.html
ARA-DEU 0.075 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.075.slice-test.html
ARA-DEU 0.1 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.1.slice-test.html
ARA-DEU 0.25 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.25.slice-test.html
ARA-DEU 0.5 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.5.slice-test.html
language pair amount of copy noise link
ENG-MAR 0.001 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.001.slice-test.html
ENG-MAR 0.005 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.005.slice-test.html
ENG-MAR 0.01 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.01.slice-test.html
ENG-MAR 0.05 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.05.slice-test.html
ENG-MAR 0.075 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.075.slice-test.html
ENG-MAR 0.1 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.1.slice-test.html
ENG-MAR 0.25 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.25.slice-test.html
ENG-MAR 0.5 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.5.slice-test.html
Owner
ZurichNLP
University of Zurich, Department of Computational Linguistics
ZurichNLP
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022