[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

Overview

AnimeGANv2

「Open Source」. The improved version of AnimeGAN.
Project Page」 | Landscape photos/videos to anime

News
(2020.12.25) AnimeGANv3 will be released along with its paper in the spring of 2021.
(2021.02.21) The pytorch version of AnimeGANv2 has been released, Be grateful to @bryandlee for his contribution.

Focus:

Anime style Film Picture Number Quality Download Style Dataset
Miyazaki Hayao The Wind Rises 1752 1080p Link
Makoto Shinkai Your Name & Weathering with you 1445 BD
Kon Satoshi Paprika 1284 BDRip

     Different styles of training have different loss weights!

News:

The improvement directions of AnimeGANv2 mainly include the following 4 points:  
  • 1. Solve the problem of high-frequency artifacts in the generated image.

  • 2. It is easy to train and directly achieve the effects in the paper.

  • 3. Further reduce the number of parameters of the generator network. (generator size: 8.17 Mb), The lite version has a smaller generator model.

  • 4. Use new high-quality style data, which come from BD movies as much as possible.

          AnimeGAN can be accessed from here.


Requirements

  • python 3.6
  • tensorflow-gpu
    • tensorflow-gpu 1.8.0 (ubuntu, GPU 1080Ti or Titan xp, cuda 9.0, cudnn 7.1.3)
    • tensorflow-gpu 1.15.0 (ubuntu, GPU 2080Ti, cuda 10.0.130, cudnn 7.6.0)
  • opencv
  • tqdm
  • numpy
  • glob
  • argparse

Usage

1. Download vgg19

vgg19.npy

2. Download Train/Val Photo dataset

Link

3. Do edge_smooth

python edge_smooth.py --dataset Hayao --img_size 256

4. Calculate the three-channel(BGR) color difference

python data_mean.py --dataset Hayao

5. Train

python main.py --phase train --dataset Hayao --data_mean [13.1360,-8.6698,-4.4661] --epoch 101 --init_epoch 10
For light version: python main.py --phase train --dataset Hayao --data_mean [13.1360,-8.6698,-4.4661] --light --epoch 101 --init_epoch 10

6. Extract the weights of the generator

python get_generator_ckpt.py --checkpoint_dir ../checkpoint/AnimeGAN_Hayao_lsgan_300_300_1_2_10_1 --style_name Hayao

7. Inference

python test.py --checkpoint_dir checkpoint/generator_Hayao_weight --test_dir dataset/test/HR_photo --style_name Hayao/HR_photo

8. Convert video to anime

python video2anime.py --video video/input/お花見.mp4 --checkpoint_dir checkpoint/generator_Paprika_weight


Results


😍 Photo to Paprika Style













😍 Photo to Hayao Style













😍 Photo to Shinkai Style











License

This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGANv2 given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.

Author

Xin Chen

Comments
  • Training code coming soon?

    Training code coming soon?

    Hello Tachibana san, Great work and congratulations on the work on AnimeGANv2. I had good success in converting the models and running the models on Android. However the latency is still an issue, it takes about 500 ms to run a 128x128 patch of image using Tensorflow Android(I tried tflite but it increases the inference time strangely.) I want to modify the network architecture and optimize its performance further to make it a real-time application (under 100 ms) So to cut a long story short, are you planning to release the training code in near future? :)

    Thank you.

    opened by maderix 10
  • Strange G_vgg loss curve

    Strange G_vgg loss curve

    Hello, thank you for posting this great work!

    I have retrained the model with a customized dataset, the results look great but the loss curves seem strange to me.

    image

    The adversary loss seems ok, I set the weights for D and G to 200 and 300, respectively, and the losses are approaching the equilibrium.

    However, the G_vgg loss, which consists of c_loss, s_loss, color_loss, tv_loss, reaches the bottom at around epoch 30 and then starts increasing. I looked at each individual loss among G_vgg_loss, only the s_loss is decreasing over time, and all others starts increasing after epoch 30. image

    Interestingly, the validation samples from epoch 100 is apparently better than the ones from epoch 30. Does anyone experience the same?

    opened by HaozhouPang 4
  • Run on CPU insted of GPU

    Run on CPU insted of GPU

    Hi, I Try To run this Project But I have little problem and when I try to start train phase this code is just only run on cpu but I install cudatoolkit and tensorflow-gpu. can u help me ?

    2020-12-06 18:00:45.278352: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA     [693/1792]
    2020-12-06 18:00:45.302721: E tensorflow/stream_executor/cuda/cuda_driver.cc:397] failed call to cuInit: CUDA_ERROR_NO_DEVICE                                                              
    2020-12-06 18:00:45.302766: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:158] retrieving CUDA diagnostic information for host: host-name
    2020-12-06 18:00:45.302775: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:165] hostname: host-name
    2020-12-06 18:00:45.302816: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] libcuda reported version is: 450.66.0
    2020-12-06 18:00:45.302853: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:193] kernel reported version is: 450.66.0                                                                 2020-12-06 18:00:45.302863: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:300] kernel version seems to match DSO: 450.66.0
    
    npy file loaded -------  vgg19_weight/vgg19.npy
    ##### Information #####
    # gan type :  lsgan
    # light :  False
    # dataset :  Hayao
    # max dataset number :  6656
    # batch_size :  12
    # epoch :  101
    # init_epoch :  10
    # training image size [H, W] :  [256, 256]
    # g_adv_weight,d_adv_weight,con_weight,sty_weight,color_weight,tv_weight :  300.0 300.0 1.5 2.5 10.0 1.0
    # init_lr,g_lr,d_lr :  0.0002 2e-05 4e-05
    # training_rate G -- D: 1 : 1
    build model finished: 0.138872s
    build model finished: 0.130571s
    build model finished: 0.120662s
    build model finished: 0.127711s
    build model finished: 0.123440s
    G:
    ---------
    Variables: name (type shape) [size]
    ---------
    generator/G_MODEL/A/Conv/weights:0 (float32_ref 7x7x3x32) [4704, bytes: 18816]
    generator/G_MODEL/A/LayerNorm/beta:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/A/LayerNorm/gamma:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/A/Conv_1/weights:0 (float32_ref 3x3x32x64) [18432, bytes: 73728]
    generator/G_MODEL/A/LayerNorm_1/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/LayerNorm_1/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/Conv_2/weights:0 (float32_ref 3x3x64x64) [36864, bytes: 147456]
    generator/G_MODEL/A/LayerNorm_2/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/LayerNorm_2/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/B/Conv/weights:0 (float32_ref 3x3x64x128) [73728, bytes: 294912]
    generator/G_MODEL/B/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/B/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/B/Conv_1/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/B/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]                                                                                                        [649/1792]generator/G_MODEL/B/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/Conv/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/C/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/r1/Conv/weights:0 (float32_ref 1x1x128x256) [32768, bytes: 131072]
    generator/G_MODEL/C/r1/LayerNorm/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/LayerNorm/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/r1/w:0 (float32_ref 3x3x256x1) [2304, bytes: 9216]
    generator/G_MODEL/C/r1/r1/bias:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/1/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/1/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/Conv_1/weights:0 (float32_ref 1x1x256x256) [65536, bytes: 262144]
    generator/G_MODEL/C/r1/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r2/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r2/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/r2/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r2/r2/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r2/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r2/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r3/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r3/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/r3/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r3/r3/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r3/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r3/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r4/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r4/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/r4/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r4/r4/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r4/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r4/2/gamma:0 (float32_ref 256) [256, bytes: 1024]                                                                                                             [605/1792]generator/G_MODEL/C/Conv_1/weights:0 (float32_ref 3x3x256x128) [294912, bytes: 1179648]
    generator/G_MODEL/C/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/Conv/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/D/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/Conv_1/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/D/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/E/Conv/weights:0 (float32_ref 3x3x128x64) [73728, bytes: 294912]
    generator/G_MODEL/E/LayerNorm/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/LayerNorm/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/Conv_1/weights:0 (float32_ref 3x3x64x64) [36864, bytes: 147456]
    generator/G_MODEL/E/LayerNorm_1/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/LayerNorm_1/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/Conv_2/weights:0 (float32_ref 7x7x64x32) [100352, bytes: 401408]
    generator/G_MODEL/E/LayerNorm_2/beta:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/E/LayerNorm_2/gamma:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/out_layer/Conv/weights:0 (float32_ref 1x1x32x3) [96, bytes: 384]
    Total size of variables: 2143552
    Total bytes of variables: 8574208
     [*] Reading checkpoints...
     [*] Failed to find a checkpoint
     [!] Load failed...
    Epoch:   0 Step:     0 /   554  time: 80.342747 s init_v_loss: 592.22143555  mean_v_loss: 592.22143555
    
    opened by amirzenoozi 3
  • Add ⭐️Weights and Biases⭐️ logging

    Add ⭐️Weights and Biases⭐️ logging

    Hey @TachibanaYoshino 👋, This PR aims to add basic Weights and Biases Metric Logging by appending to the existing codebase with minimal changes.

    The changes can be summarized as follows :-

    Add 3 extra arguments namely --use_wandb, --wandb_project and --wandb_entity which can be used to specify whether to use wandb, the name of the project to be used ("AnimeGANv2" by default) and name of the entity to be used.

    opened by SauravMaheshkar 2
  • Can I train a model by using multiple GPUs?

    Can I train a model by using multiple GPUs?

    Thank you for your awesome project. I think if i can using mulitple GPUs to traning, it's making things be more efficient. Hope to get some advice from you. Thanks.

    opened by MorningStarJ 2
  • typo on the folders

    typo on the folders

    Hello Author! your folder naming has a typo though It's kinda annoying to rename it again and again cuz I'm using google colab cuz I tried to use shinkai image image

    opened by IchimakiKasura 2
  • issue saving checkpoints of model

    issue saving checkpoints of model

    hello! when I try to train the model, I get the following error when the code tries to save the checkpoint:

    Traceback (most recent call last):
      File "main.py", line 115, in <module>
        main()
      File "main.py", line 107, in main
        gan.train()
      File "/content/drive/.shortcut-targets-by-id/1X8hfrOWE2KxmaJG4LFKH9ydVQ4BA7oyZ/cs7643-final-project/AnimeGANv2.py", line 302, in train
        self.save(self.checkpoint_dir, epoch)
      File "/content/drive/.shortcut-targets-by-id/1X8hfrOWE2KxmaJG4LFKH9ydVQ4BA7oyZ/cs7643-final-project/AnimeGANv2.py", line 341, in save
        self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name + '.model'), global_step=step)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/saver.py", line 1186, in save
        save_relative_paths=self._save_relative_paths)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/checkpoint_management.py", line 231, in update_checkpoint_state_internal
        last_preserved_timestamp=last_preserved_timestamp)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/checkpoint_management.py", line 110, in generate_checkpoint_state_proto
        model_checkpoint_path = os.path.relpath(model_checkpoint_path, save_dir)
      File "/usr/lib/python3.7/posixpath.py", line 475, in relpath
        start_list = [x for x in abspath(start).split(sep) if x]
      File "/usr/lib/python3.7/posixpath.py", line 383, in abspath
        cwd = os.getcwd()
    FileNotFoundError: [Errno 2] No such file or directory
    

    I mounted my google drive into colab and am using colab to train the model. When I check my checkpoint folder, I have two files there but it appears that I am missing the checkpoint binary file and the .meta file. Any idea why this could be happening? image

    opened by wooae 1
  • Cannot understand rgb2yuv function code

    Cannot understand rgb2yuv function code

    def rgb2yuv(rgb):
        """
        Convert RGB image into YUV https://en.wikipedia.org/wiki/YUV
        """
        rgb = (rgb + 1.0)/2.0
        return tf.image.rgb_to_yuv(rgb)
    

    tf.image.rgb_to_yuv(rgb) do the op: rgb_to_yuv so,I can't understand what this line of code means: "rgb = (rgb + 1.0)/2.0"

    opened by wan-h 1
  • What attributed to the better performance of the model compared to your earlier model?

    What attributed to the better performance of the model compared to your earlier model?

    Hi, thanks for sharing your work. What in your opinion was the key to achieving better performance compared to your earlier model (v1) and/or other models?

    I've roughly seen the code of this repo but I can't figure it out.

    opened by xiankgx 1
  • How to use 512 x 512 or higher-definition pictures for training

    How to use 512 x 512 or higher-definition pictures for training

    I want to use 512 x 512 or higher resolution images, my plan is as follows:

    1. ffmpeg extracts 1080 * 1080 pictures, then sacle to 512 x 512
    2. python edge_smooth.py --dataset xxxx --img_size 512
    3. python train.py --dataset xxxx --epoch 101 --init_epoch 10 But I see that the pictures in train_photo under the dataset will also be used for training, so do the pictures in train_photo need to be updated to 512 x 512?
    opened by mjgaga 0
  • Could you share how you get the improvements that you mentioned in the readme?

    Could you share how you get the improvements that you mentioned in the readme?

    Hi, Could you share how you get these 3 improvements that you mentioned in the readme?


    1. Solve the problem of high-frequency artifacts in the generated image.

    2. It is easy to train and directly achieve the effects in the paper.

    3. Further reduce the number of parameters of the generator network. (generator size: 8.17 Mb), The lite version has a smaller generator model.


    opened by kasim0226 0
  • How to train face model?

    How to train face model?

    Is the training method the same as the training landscape photos? The difference is the data set. As long as the human face data is aligned, plus the animation face alignment, is that right?

    opened by baixinping618 0
Owner
CC
AI Algorithm Engineer
CC
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022