[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

Overview

AnimeGANv2

「Open Source」. The improved version of AnimeGAN.
Project Page」 | Landscape photos/videos to anime

News
(2020.12.25) AnimeGANv3 will be released along with its paper in the spring of 2021.
(2021.02.21) The pytorch version of AnimeGANv2 has been released, Be grateful to @bryandlee for his contribution.

Focus:

Anime style Film Picture Number Quality Download Style Dataset
Miyazaki Hayao The Wind Rises 1752 1080p Link
Makoto Shinkai Your Name & Weathering with you 1445 BD
Kon Satoshi Paprika 1284 BDRip

     Different styles of training have different loss weights!

News:

The improvement directions of AnimeGANv2 mainly include the following 4 points:  
  • 1. Solve the problem of high-frequency artifacts in the generated image.

  • 2. It is easy to train and directly achieve the effects in the paper.

  • 3. Further reduce the number of parameters of the generator network. (generator size: 8.17 Mb), The lite version has a smaller generator model.

  • 4. Use new high-quality style data, which come from BD movies as much as possible.

          AnimeGAN can be accessed from here.


Requirements

  • python 3.6
  • tensorflow-gpu
    • tensorflow-gpu 1.8.0 (ubuntu, GPU 1080Ti or Titan xp, cuda 9.0, cudnn 7.1.3)
    • tensorflow-gpu 1.15.0 (ubuntu, GPU 2080Ti, cuda 10.0.130, cudnn 7.6.0)
  • opencv
  • tqdm
  • numpy
  • glob
  • argparse

Usage

1. Download vgg19

vgg19.npy

2. Download Train/Val Photo dataset

Link

3. Do edge_smooth

python edge_smooth.py --dataset Hayao --img_size 256

4. Calculate the three-channel(BGR) color difference

python data_mean.py --dataset Hayao

5. Train

python main.py --phase train --dataset Hayao --data_mean [13.1360,-8.6698,-4.4661] --epoch 101 --init_epoch 10
For light version: python main.py --phase train --dataset Hayao --data_mean [13.1360,-8.6698,-4.4661] --light --epoch 101 --init_epoch 10

6. Extract the weights of the generator

python get_generator_ckpt.py --checkpoint_dir ../checkpoint/AnimeGAN_Hayao_lsgan_300_300_1_2_10_1 --style_name Hayao

7. Inference

python test.py --checkpoint_dir checkpoint/generator_Hayao_weight --test_dir dataset/test/HR_photo --style_name Hayao/HR_photo

8. Convert video to anime

python video2anime.py --video video/input/お花見.mp4 --checkpoint_dir checkpoint/generator_Paprika_weight


Results


😍 Photo to Paprika Style













😍 Photo to Hayao Style













😍 Photo to Shinkai Style











License

This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGANv2 given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.

Author

Xin Chen

Comments
  • Training code coming soon?

    Training code coming soon?

    Hello Tachibana san, Great work and congratulations on the work on AnimeGANv2. I had good success in converting the models and running the models on Android. However the latency is still an issue, it takes about 500 ms to run a 128x128 patch of image using Tensorflow Android(I tried tflite but it increases the inference time strangely.) I want to modify the network architecture and optimize its performance further to make it a real-time application (under 100 ms) So to cut a long story short, are you planning to release the training code in near future? :)

    Thank you.

    opened by maderix 10
  • Strange G_vgg loss curve

    Strange G_vgg loss curve

    Hello, thank you for posting this great work!

    I have retrained the model with a customized dataset, the results look great but the loss curves seem strange to me.

    image

    The adversary loss seems ok, I set the weights for D and G to 200 and 300, respectively, and the losses are approaching the equilibrium.

    However, the G_vgg loss, which consists of c_loss, s_loss, color_loss, tv_loss, reaches the bottom at around epoch 30 and then starts increasing. I looked at each individual loss among G_vgg_loss, only the s_loss is decreasing over time, and all others starts increasing after epoch 30. image

    Interestingly, the validation samples from epoch 100 is apparently better than the ones from epoch 30. Does anyone experience the same?

    opened by HaozhouPang 4
  • Run on CPU insted of GPU

    Run on CPU insted of GPU

    Hi, I Try To run this Project But I have little problem and when I try to start train phase this code is just only run on cpu but I install cudatoolkit and tensorflow-gpu. can u help me ?

    2020-12-06 18:00:45.278352: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA     [693/1792]
    2020-12-06 18:00:45.302721: E tensorflow/stream_executor/cuda/cuda_driver.cc:397] failed call to cuInit: CUDA_ERROR_NO_DEVICE                                                              
    2020-12-06 18:00:45.302766: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:158] retrieving CUDA diagnostic information for host: host-name
    2020-12-06 18:00:45.302775: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:165] hostname: host-name
    2020-12-06 18:00:45.302816: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] libcuda reported version is: 450.66.0
    2020-12-06 18:00:45.302853: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:193] kernel reported version is: 450.66.0                                                                 2020-12-06 18:00:45.302863: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:300] kernel version seems to match DSO: 450.66.0
    
    npy file loaded -------  vgg19_weight/vgg19.npy
    ##### Information #####
    # gan type :  lsgan
    # light :  False
    # dataset :  Hayao
    # max dataset number :  6656
    # batch_size :  12
    # epoch :  101
    # init_epoch :  10
    # training image size [H, W] :  [256, 256]
    # g_adv_weight,d_adv_weight,con_weight,sty_weight,color_weight,tv_weight :  300.0 300.0 1.5 2.5 10.0 1.0
    # init_lr,g_lr,d_lr :  0.0002 2e-05 4e-05
    # training_rate G -- D: 1 : 1
    build model finished: 0.138872s
    build model finished: 0.130571s
    build model finished: 0.120662s
    build model finished: 0.127711s
    build model finished: 0.123440s
    G:
    ---------
    Variables: name (type shape) [size]
    ---------
    generator/G_MODEL/A/Conv/weights:0 (float32_ref 7x7x3x32) [4704, bytes: 18816]
    generator/G_MODEL/A/LayerNorm/beta:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/A/LayerNorm/gamma:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/A/Conv_1/weights:0 (float32_ref 3x3x32x64) [18432, bytes: 73728]
    generator/G_MODEL/A/LayerNorm_1/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/LayerNorm_1/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/Conv_2/weights:0 (float32_ref 3x3x64x64) [36864, bytes: 147456]
    generator/G_MODEL/A/LayerNorm_2/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/A/LayerNorm_2/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/B/Conv/weights:0 (float32_ref 3x3x64x128) [73728, bytes: 294912]
    generator/G_MODEL/B/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/B/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/B/Conv_1/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/B/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]                                                                                                        [649/1792]generator/G_MODEL/B/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/Conv/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/C/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/r1/Conv/weights:0 (float32_ref 1x1x128x256) [32768, bytes: 131072]
    generator/G_MODEL/C/r1/LayerNorm/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/LayerNorm/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/r1/w:0 (float32_ref 3x3x256x1) [2304, bytes: 9216]
    generator/G_MODEL/C/r1/r1/bias:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/1/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/1/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/Conv_1/weights:0 (float32_ref 1x1x256x256) [65536, bytes: 262144]
    generator/G_MODEL/C/r1/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r1/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r2/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r2/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/r2/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r2/r2/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r2/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r2/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r2/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r3/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r3/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/r3/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r3/r3/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r3/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r3/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r3/2/gamma:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r4/Conv/weights:0 (float32_ref 1x1x256x512) [131072, bytes: 524288]
    generator/G_MODEL/C/r4/LayerNorm/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/LayerNorm/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/r4/w:0 (float32_ref 3x3x512x1) [4608, bytes: 18432]
    generator/G_MODEL/C/r4/r4/bias:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/1/beta:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/1/gamma:0 (float32_ref 512) [512, bytes: 2048]
    generator/G_MODEL/C/r4/Conv_1/weights:0 (float32_ref 1x1x512x256) [131072, bytes: 524288]
    generator/G_MODEL/C/r4/2/beta:0 (float32_ref 256) [256, bytes: 1024]
    generator/G_MODEL/C/r4/2/gamma:0 (float32_ref 256) [256, bytes: 1024]                                                                                                             [605/1792]generator/G_MODEL/C/Conv_1/weights:0 (float32_ref 3x3x256x128) [294912, bytes: 1179648]
    generator/G_MODEL/C/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/C/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/Conv/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/D/LayerNorm/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/LayerNorm/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/Conv_1/weights:0 (float32_ref 3x3x128x128) [147456, bytes: 589824]
    generator/G_MODEL/D/LayerNorm_1/beta:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/D/LayerNorm_1/gamma:0 (float32_ref 128) [128, bytes: 512]
    generator/G_MODEL/E/Conv/weights:0 (float32_ref 3x3x128x64) [73728, bytes: 294912]
    generator/G_MODEL/E/LayerNorm/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/LayerNorm/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/Conv_1/weights:0 (float32_ref 3x3x64x64) [36864, bytes: 147456]
    generator/G_MODEL/E/LayerNorm_1/beta:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/LayerNorm_1/gamma:0 (float32_ref 64) [64, bytes: 256]
    generator/G_MODEL/E/Conv_2/weights:0 (float32_ref 7x7x64x32) [100352, bytes: 401408]
    generator/G_MODEL/E/LayerNorm_2/beta:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/E/LayerNorm_2/gamma:0 (float32_ref 32) [32, bytes: 128]
    generator/G_MODEL/out_layer/Conv/weights:0 (float32_ref 1x1x32x3) [96, bytes: 384]
    Total size of variables: 2143552
    Total bytes of variables: 8574208
     [*] Reading checkpoints...
     [*] Failed to find a checkpoint
     [!] Load failed...
    Epoch:   0 Step:     0 /   554  time: 80.342747 s init_v_loss: 592.22143555  mean_v_loss: 592.22143555
    
    opened by amirzenoozi 3
  • Add ⭐️Weights and Biases⭐️ logging

    Add ⭐️Weights and Biases⭐️ logging

    Hey @TachibanaYoshino 👋, This PR aims to add basic Weights and Biases Metric Logging by appending to the existing codebase with minimal changes.

    The changes can be summarized as follows :-

    Add 3 extra arguments namely --use_wandb, --wandb_project and --wandb_entity which can be used to specify whether to use wandb, the name of the project to be used ("AnimeGANv2" by default) and name of the entity to be used.

    opened by SauravMaheshkar 2
  • Can I train a model by using multiple GPUs?

    Can I train a model by using multiple GPUs?

    Thank you for your awesome project. I think if i can using mulitple GPUs to traning, it's making things be more efficient. Hope to get some advice from you. Thanks.

    opened by MorningStarJ 2
  • typo on the folders

    typo on the folders

    Hello Author! your folder naming has a typo though It's kinda annoying to rename it again and again cuz I'm using google colab cuz I tried to use shinkai image image

    opened by IchimakiKasura 2
  • issue saving checkpoints of model

    issue saving checkpoints of model

    hello! when I try to train the model, I get the following error when the code tries to save the checkpoint:

    Traceback (most recent call last):
      File "main.py", line 115, in <module>
        main()
      File "main.py", line 107, in main
        gan.train()
      File "/content/drive/.shortcut-targets-by-id/1X8hfrOWE2KxmaJG4LFKH9ydVQ4BA7oyZ/cs7643-final-project/AnimeGANv2.py", line 302, in train
        self.save(self.checkpoint_dir, epoch)
      File "/content/drive/.shortcut-targets-by-id/1X8hfrOWE2KxmaJG4LFKH9ydVQ4BA7oyZ/cs7643-final-project/AnimeGANv2.py", line 341, in save
        self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name + '.model'), global_step=step)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/saver.py", line 1186, in save
        save_relative_paths=self._save_relative_paths)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/checkpoint_management.py", line 231, in update_checkpoint_state_internal
        last_preserved_timestamp=last_preserved_timestamp)
      File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/training/checkpoint_management.py", line 110, in generate_checkpoint_state_proto
        model_checkpoint_path = os.path.relpath(model_checkpoint_path, save_dir)
      File "/usr/lib/python3.7/posixpath.py", line 475, in relpath
        start_list = [x for x in abspath(start).split(sep) if x]
      File "/usr/lib/python3.7/posixpath.py", line 383, in abspath
        cwd = os.getcwd()
    FileNotFoundError: [Errno 2] No such file or directory
    

    I mounted my google drive into colab and am using colab to train the model. When I check my checkpoint folder, I have two files there but it appears that I am missing the checkpoint binary file and the .meta file. Any idea why this could be happening? image

    opened by wooae 1
  • Cannot understand rgb2yuv function code

    Cannot understand rgb2yuv function code

    def rgb2yuv(rgb):
        """
        Convert RGB image into YUV https://en.wikipedia.org/wiki/YUV
        """
        rgb = (rgb + 1.0)/2.0
        return tf.image.rgb_to_yuv(rgb)
    

    tf.image.rgb_to_yuv(rgb) do the op: rgb_to_yuv so,I can't understand what this line of code means: "rgb = (rgb + 1.0)/2.0"

    opened by wan-h 1
  • What attributed to the better performance of the model compared to your earlier model?

    What attributed to the better performance of the model compared to your earlier model?

    Hi, thanks for sharing your work. What in your opinion was the key to achieving better performance compared to your earlier model (v1) and/or other models?

    I've roughly seen the code of this repo but I can't figure it out.

    opened by xiankgx 1
  • How to use 512 x 512 or higher-definition pictures for training

    How to use 512 x 512 or higher-definition pictures for training

    I want to use 512 x 512 or higher resolution images, my plan is as follows:

    1. ffmpeg extracts 1080 * 1080 pictures, then sacle to 512 x 512
    2. python edge_smooth.py --dataset xxxx --img_size 512
    3. python train.py --dataset xxxx --epoch 101 --init_epoch 10 But I see that the pictures in train_photo under the dataset will also be used for training, so do the pictures in train_photo need to be updated to 512 x 512?
    opened by mjgaga 0
  • Could you share how you get the improvements that you mentioned in the readme?

    Could you share how you get the improvements that you mentioned in the readme?

    Hi, Could you share how you get these 3 improvements that you mentioned in the readme?


    1. Solve the problem of high-frequency artifacts in the generated image.

    2. It is easy to train and directly achieve the effects in the paper.

    3. Further reduce the number of parameters of the generator network. (generator size: 8.17 Mb), The lite version has a smaller generator model.


    opened by kasim0226 0
  • How to train face model?

    How to train face model?

    Is the training method the same as the training landscape photos? The difference is the data set. As long as the human face data is aligned, plus the animation face alignment, is that right?

    opened by baixinping618 0
Owner
CC
AI Algorithm Engineer
CC
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022