Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Overview

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021)

Paper

Introduction

The conventional detectors tend to make imbalanced classification and suffer performance drop, when the distribution of the training data is severely skewed. In this paper, we propose to use the mean classification score to indicate the classification accuracy for each category during training. Based on this indicator, we balance the classification via an Equilibrium Loss (EBL) and a Memory-augmented Feature Sampling (MFS) method. Specifically, EBL increases the intensity of the adjustment of the decision boundary for the weak classes by a designed score-guided loss margin between any two classes. On the other hand, MFS improves the frequency and accuracy of the adjustments of the decision boundary for the weak classes through over-sampling the instance features of those classes. Therefore, EBL and MFS work collaboratively for finding the classification equilibrium in long-tailed detection, and dramatically improve the performance of tail classes while maintaining or even improving the performance of head classes. We conduct experiments on LVIS using Mask R-CNN with various backbones including ResNet-50-FPN and ResNet-101-FPN to show the superiority of the proposed method. It improves the detection performance of tail classes by 15.6 AP, and outperforms the most recent long-tailed object detectors by more than 1 AP.

Method overview

method overview

Memory-augmented Feature Sampling (MFS)

method overview

Prerequisites

  • MMDetection version 2.8.0.

  • Please see get_started.md for installation and the basic usage of MMDetection.

Train

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with LVIS v1.0 dataset in 'data/lvis_v1/'.
# use decoupled training pipeline:

# 1. train the model with Mask R-CNN
./tools/dist_train.sh configs/loce/mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py 8

# 2. fine-tune the model with LOCE
./tools/dist_train.sh configs/loce/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py 8

Inference

./tools/dist_test.sh configs/loce/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py work_dirs/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1/epoch_6.pth 8 --eval bbox segm

Models

For your convenience, we provide the following trained models (LOCE). All models are trained with 16 images in a mini-batch.

Model Dataset MS train box AP mask AP Pretrained Model LOCE
LOCE_R_50_FPN_2x LVIS v0.5 Yes 28.2 28.4 config / model config / model
LOCE_R_50_FPN_2x LVIS v1.0 Yes 27.4 26.6 config / model config / model
LOCE_R_101_FPN_2x LVIS v1.0 Yes 29.0 28.0 config / model config / model

[0] All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..
[1] Refer to more details in config files in config/loce/.

Acknowledgement

Thanks MMDetection team for the wonderful open source project!

Citation

If you find LOCE useful in your research, please consider citing:

@inproceedings{feng2021exploring,
    title={Exploring Classification Equilibrium in Long-Tailed Object Detection},
    author={Feng, Chengjian and Zhong, Yujie and Huang, Weilin},
    booktitle={ICCV},
    year={2021}
}
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021