[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

Overview

RoSTER

The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, published in EMNLP 2021.

Requirements

At least one GPU is required to run the code.

Before running, you need to first install the required packages by typing following commands:

$ pip3 install -r requirements.txt

Python 3.6 or above is strongly recommended; using older python versions might lead to package incompatibility issues.

Reproducing the Results

The three datasets used in the paper can be found under the data directory. We provide three bash scripts run_conll.sh, run_onto.sh and run_wikigold.sh for running the model on the three datasets.

Note: Our model does not use any ground truth training/valid/test set labels but only distant labels; we provide the ground truth label files only for completeness and evaluation.

The training bash scripts assume you use one GPU for training (a GPU with around 20GB memory would be sufficient). If your GPUs have smaller memory sizes, try increasing gradient_accumulation_steps or using more GPUs (by setting the CUDA_VISIBLE_DEVICES environment variable). However, the train_batch_size should be always kept as 32.

Command Line Arguments

The meanings of the command line arguments will be displayed upon typing

python src/train.py -h

The following arguments are important and need to be set carefully:

  • train_batch_size: The effective training batch size after gradient accumulation. Usually 32 is good for different datasets.
  • gradient_accumulation_steps: Increase this value if your GPU cannot hold the training batch size (while keeping train_batch_size unchanged).
  • eval_batch_size: This argument only affects the speed of the algorithm; use as large evaluation batch size as your GPUs can hold.
  • max_seq_length: This argument controls the maximum length of sequence fed into the model (longer sequences will be truncated). Ideally, max_seq_length should be set to the length of the longest document (max_seq_length cannot be larger than 512 under RoBERTa architecture), but using larger max_seq_length also consumes more GPU memory, resulting in smaller batch size and longer training time. Therefore, you can trade model accuracy for faster training by reducing max_seq_length.
  • noise_train_epochs, ensemble_train_epochs, self_train_epochs: They control how many epochs to train the model for noise-robust training, ensemble model trianing and self-training, respectively. Their default values will be a good starting point for most datasets, but you may increase them if your dataset is small (e.g., Wikigold dataset) and decrease them if your dataset is large (e.g., OntoNotes dataset).
  • q, tau: Hyperparameters used for noise-robust training. Their default values will be a good starting point for most datasets, but you may use higher values if your dataset is more noisy and use lower values if your dataset is cleaner.
  • noise_train_update_interval, self_train_update_interval: They control how often to update training label weights in noise-robust training and compute soft labels in soft-training, respectively. Their default values will be a good starting point for most datasets, but you may use smaller values (more frequent updates) if your dataset is small (e.g., Wikigold dataset).

Other arguments can be kept as their default values.

Running on New Datasets

To execute the code on a new dataset, you need to

  1. Create a directory named your_dataset under data.
  2. Prepare a training corpus train_text.txt (one sequence per line; words separated by whitespace) and the corresponding distant label train_label_dist.txt (one sequence per line; labels separated by whitespace) under your_dataset for training the NER model.
  3. Prepare an entity type file types.txt under your_dataset (each line contains one entity type; no need to include O class; no need to prepend I-/B- to type names). The entity type names need to be consistant with those in train_label_dist.txt.
  4. (Optional) You can choose to provide a test corpus test_text.txt (one sequence per line) with ground truth labels test_label_true.txt (one sequence per line; labels separated by whitespace). If the test corpus is provided and the command line argument do_eval is turned on, the code will display evaluation results on the test set during training, which is useful for tuning hyperparameters and monitoring the training progress.
  5. Run the code with appropriate command line arguments (I recommend creating a new bash script by referring to the three example scripts).
  6. The final trained classification model will be saved as final_model.pt under the output directory specified by the command line argument output_dir.

You can always refer to the example datasets when preparing your own datasets.

Citations

Please cite the following paper if you find the code helpful for your research.

@inproceedings{meng2021distantly,
  title={Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training},
  author={Meng, Yu and Zhang, Yunyi and Huang, Jiaxin and Wang, Xuan and Zhang, Yu and Ji, Heng and Han, Jiawei},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  year={2021},
}
Owner
Yu Meng
Ph.D. student, Text Mining
Yu Meng
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022