python library for invisible image watermark (blind image watermark)

Overview

invisible-watermark

PyPI License Python Platform Downloads

invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image watermark, digital image watermark). The algorithm doesn't reply on the original image.

Note that this library is still experimental and it doesn't support GPU acceleration, carefully deploy it on the production environment. The default method dwtDCT(one variant of frequency methods) is ready for on-the-fly embedding, the other methods are too slow on a CPU only environment.

supported algorithms

speed

  • default embedding method dwtDct is fast and suitable for on-the-fly embedding
  • dwtDctSvd is 3x slower and rivaGan is 10x slower, for large image they are not suitable for on-the-fly embedding

accuracy

  • The algorithm cannot gurantee to decode the original watermarks 100% accurately even though we don't apply any attack.
  • Known defects: Test shows all algorithms do not perform well for web page screenshots or posters with homogenous background color

Supported Algorithms

  • dwtDct: DWT + DCT transform, embed watermark bit into max non-trivial coefficient of block dct coefficents

  • dwtDctSvd: DWT + DCT transform, SVD decomposition of each block, embed watermark bit into singular value decomposition

  • rivaGan: encoder/decoder model with Attention mechanism + embed watermark bits into vector.

background:

How to install

pip install invisible-watermark

Library API

Embed watermark

  • example embed 4 characters (32 bits) watermark
import cv2
from imwatermark import WatermarkEncoder

bgr = cv2.imread('test.png')
wm = 'test'

encoder = WatermarkEncoder()
encoder.set_watermark('bytes', wm.encode('utf-8'))
bgr_encoded = encoder.encode(bgr, 'dwtDct')

cv2.imwrite('test_wm.png', bgr_encoded)

Decode watermark

  • example decode 4 characters (32 bits) watermark
import cv2
from imwatermark import WatermarkDecoder

bgr = cv2.imread('test_wm.png')

decoder = WatermarkDecoder('bytes', 32)
watermark = decoder.decode(bgr, 'dwtDct')
print(watermark.decode('utf-8'))

CLI Usage

embed watermark:  ./invisible-watermark -v -a encode -t bytes -m dwtDct -w 'hello' -o ./test_vectors/wm.png ./test_vectors/original.jpg

decode watermark: ./invisible-watermark -v -a decode -t bytes -m dwtDct -l 40 ./test_vectors/wm.png

positional arguments:
  input                 The path of input

optional arguments:
  -h, --help            show this help message and exit
  -a ACTION, --action ACTION
                        encode|decode (default: None)
  -t TYPE, --type TYPE  bytes|b16|bits|uuid|ipv4 (default: bits)
  -m METHOD, --method METHOD
                        dwtDct|dwtDctSvd|rivaGan (default: maxDct)
  -w WATERMARK, --watermark WATERMARK
                        embedded string (default: )
  -l LENGTH, --length LENGTH
                        watermark bits length, required for bytes|b16|bits
                        watermark (default: 0)
  -o OUTPUT, --output OUTPUT
                        The path of output (default: None)
  -v, --verbose         print info (default: False)

Test Result

For better doc reading, we compress all images in this page, but the test is taken on 1920x1080 original image.

Methods are not robust to resize or aspect ratio changed crop but robust to noise, color filter, brightness and jpg compress.

rivaGan outperforms the default method on crop attack.

only default method is ready for on-the-fly embedding.

Input

  • Input Image: 1960x1080 Image
  • Watermark:
    • For freq method, we use 64bits, string expression "qingquan"
    • For RivaGan method, we use 32bits, string expression "qing"
  • Parameters: only take U frame to keep image quality, scale=36

Attack Performance

Watermarked Image

wm

Attacks Image Freq Method RivaGan
JPG Compress wm_jpg Pass Pass
Noise wm_noise Pass Pass
Brightness wm_darken Pass Pass
Overlay wm_overlay Pass Pass
Mask wm_mask_large Pass Pass
crop 7x5 wm_crop_7x5 Fail Pass
Resize 50% wm_resize_half Fail Fail
Rotate 30 degress wm_rotate Fail Fail

Running Speed (CPU Only)

Image Method Encoding Decoding
1920x1080 dwtDct 300-350ms 150ms-200ms
1920x1080 dwtDctSvd 1500ms-2s ~1s
1920x1080 rivaGan ~5s 4-5s
600x600 dwtDct 70ms 60ms
600x600 dwtDctSvd 185ms 320ms
600x600 rivaGan 1s 600ms

RivaGAN Experimental

Further, We will deliver the 64bit rivaGan model and test the performance on GPU environment.

Detail: https://github.com/DAI-Lab/RivaGAN

Zhang, Kevin Alex and Xu, Lei and Cuesta-Infante, Alfredo and Veeramachaneni, Kalyan. Robust Invisible Video Watermarking with Attention. MIT EECS, September 2019.[PDF]

You might also like...
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Comments
  • Potentially performance issues

    Potentially performance issues

    When using an image larger than 1MB the performance degradates quickly. What we observe is that with an image of 1920 × 1080 the performance is great, but using an image of 9504 × 6336 inside a container with 20GB of RAM after ~40 minutes the flask repository we put on top of the library crashes because the container is OOM. Is there a way to improve performance in this sense?

    opened by luca-simonetti 0
  • CLI decode doesn't work if output image is JPG

    CLI decode doesn't work if output image is JPG

    I'm trying to use as CLI and python script to generate a wmrked JPG but watermark decode doesn't show anything:

    C:\Users\me\AppData\Local\Programs\Python\Python310\Scripts>py invisible-watermark "F:\JPEG\_DSC5341.jpg" -v -a encode -t bytes -m dwtDct -w '1234' -o "F:\JPEG\_DSC5341-w.jpg"
    watermark length: 48
    encode time ms: 2819.3318843841553
    
    C:\Users\me\AppData\Local\Programs\Python\Python310\Scripts>py invisible-watermark "F:\JPEG\_DSC5341-w.jpg" -v -a decode -t bytes -m dwtDct -l 48
    decode time ms: 1944.9546337127686
    

    It's like there is no watermark impressed in it, unless I use a PNG as output. I posted the images I'm using for test purpouses.

    raw img test wm img test_wm

    opened by TheNemus 0
  • Example code not working

    Example code not working

    encoded the image, then decoding returned nothing, not "test" like expected.

    edit: tried with a different png image: Traceback (most recent call last): File "/home/me/whisper/decode.py", line 8, in print(watermark.decode('utf-8')) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte

    opened by ClashSAN 0
  • How does this work?

    How does this work?

    I think a quick blurb about how the watermarks implemented by this package work would be helpful. Is it the pixel rounding that I can read about here? https://invisiblewatermark.net/how-invisible-watermarks-work.html

    opened by kevinlinxc 0
Releases(0.1.5)
Owner
Shield Mountain
Video on demand with multi DRM enterprise solutions
Shield Mountain
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022