Retinal vessel segmentation based on GT-UNet

Related tags

Deep LearningGT-U-Net
Overview

Retinal vessel segmentation based on GT-UNet

Introduction

This project is a retinal blood vessel segmentation code based on UNet-like Group Transformer Network (GT-UNet), including data preprocessing, model training and testing, visualization, etc.

Requirements

The main package and version of the python environment are as follows

# Name                    Version         
python                    3.7.9                    
pytorch                   1.7.0         
torchvision               0.8.0         
cudatoolkit               10.2.89       
cudnn                     7.6.5           
matplotlib                3.3.2              
numpy                     1.19.2        
opencv                    3.4.2         
pandas                    1.1.3        
pillow                    8.0.1         
scikit-learn              0.23.2          
scipy                     1.5.2           
tensorboardX              2.1        
tqdm                      4.54.1             

Usage

The project structure and intention are as follows :

VesselSeg-Pytorch			# Source code		
    ├── config.py		 	# Configuration information
    ├── lib			            # Function library
    │   ├── common.py
    │   ├── dataset.py		        # Dataset class to load training data
    │   ├── datasetV2.py		        # Dataset class to load training data with lower memory
    │   ├── extract_patches.py		# Extract training and test samples
    │   ├── help_functions.py		# 
    │   ├── __init__.py
    │   ├── logger.py 		        # To create log
    │   ├── losses
    │   ├── metrics.py		        # Evaluation metrics
    │   └── pre_processing.py		# Data preprocessing
    ├── models		        # All models are created in this folder
    │   ├── __init__.py
    │   ├── nn
    │   └── GT-UNet.py
    ├── prepare_dataset	        # Prepare the dataset (organize the image path of the dataset)
    │   ├── chasedb1.py
    │   ├── data_path_list		  # image path of dataset
    │   ├── drive.py
    │   └── stare.py
    ├── tools			     # some tools
    │   ├── ablation_plot.py
    │   ├── ablation_plot_with_detail.py
    │   ├── merge_k-flod_plot.py
    │   └── visualization
    ├── function.py			        # Creating dataloader, training and validation functions 
    ├── test.py			            # Test file
    └── train.py			          # Train file

Training model

Please confirm the configuration information in the config.py. Pay special attention to the train_data_path_list and test_data_path_list. Then, running:

python train.py

You can configure the training information in config, or modify the configuration parameters using the command line. The training results will be saved to the corresponding directory(save name) in the experiments folder.

3) Testing model

The test process also needs to specify parameters in config.py. You can also modify the parameters through the command line, running:

python test.py  

The above command loads the best_model.pth in ./experiments/GT-UNet_vessel_seg and performs a performance test on the testset, and its test results are saved in the same folder.

Owner
Kent0n
Kent0n
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
2 Jul 19, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022