SeqTR: A Simple yet Universal Network for Visual Grounding

Overview

SeqTR

overview

This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling for visual grounding tasks under a novel point prediction paradigm.

Installation

Prerequisites

pip install -r requirements.txt
wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
pip install en_vectors_web_lg-2.1.0.tar.gz

Then install SeqTR package in editable mode:

pip install -e .

Data Preparation

  1. Download our preprocessed json files including the merged dataset for pre-training, and DarkNet-53 model weights trained on MS-COCO object detection task.
  2. Download the train2014 images from mscoco or from Joseph Redmon's mscoco mirror, of which the download speed is faster than the official website.
  3. Download original Flickr30K images, ReferItGame images, and Visual Genome images.

The project structure should look like the following:

| -- SeqTR
     | -- data
        | -- annotations
            | -- flickr30k
                | -- instances.json
                | -- ix_to_token.pkl
                | -- token_to_ix.pkl
                | -- word_emb.npz
            | -- referitgame-berkeley
            | -- refcoco-unc
            | -- refcocoplus-unc
            | -- refcocog-umd
            | -- refcocog-google
            | -- pretraining-vg 
        | -- weights
            | -- darknet.weights
            | -- yolov3.weights
        | -- images
            | -- mscoco
                | -- train2014
                    | -- COCO_train2014_000000000072.jpg
                    | -- ...
            | -- saiaprtc12
                | -- 25.jpg
                | -- ...
            | -- flickr30k
                | -- 36979.jpg
                | -- ...
            | -- visual-genome
                | -- 2412112.jpg
                | -- ...
     | -- configs
     | -- seqtr
     | -- tools
     | -- teaser

Note that the darknet.weights excludes val/test images of RefCOCO/+/g datasets while yolov3.weights does not.

Training

Phrase Localization and Referring Expression Comprehension

We train SeqTR to perform grouning at bounding box level on a single V100 GPU. The following script performs the training:

python tools/train.py configs/seqtr/detection/seqtr_det_[DATASET_NAME].py --cfg-options ema=True

[DATASET_NAME] is one of "flickr30k", "referitgame-berkeley", "refcoco-unc", "refcocoplus-unc", "refcocog-umd", and "refcocog-google".

Referring Expression Segmentation

To train SeqTR to generate the target sequence of ground-truth mask, which is then assembled into the predicted mask by connecting the points, run the following script:

python tools/train.py configs/seqtr/segmentation/seqtr_mask_[DATASET_NAME].py --cfg-options ema=True

Note that instead of sampling 18 points and does not shuffle the sequence for RefCOCO dataset, for RefCOCO+ and RefCOCOg, we uniformly sample 12 points on the mask contour and randomly shffle the sequence with 20% percentage. Therefore, to execute the training on RefCOCO+/g datasets, modify num_ray at line 1 to 18 and model.head.shuffle_fraction to 0.2 at line 35, in configs/seqtr/segmentation/seqtr_mask_darknet.py.

Evaluation

python tools/test.py [PATH_TO_CONFIG_FILE] --load-from [PATH_TO_CHECKPOINT_FILE]

Pre-training + fine-tuning

We train SeqTR on 8 V100 GPUs while disabling Large Scale Jittering (LSJ) and Exponential Moving Average (EMA):

bash tools/dist_train.sh configs/seqtr/detection/seqtr_det_pretraining-vg.py 8

Models

RefCOCO RefCOCO+ RefCOCOg
val testA testB model val testA testB model val-g val-u val-u model
SeqTR on REC 81.23 85.00 76.08 68.82 75.37 58.78 - 71.35 71.58
SeqTR* on REC 83.72 86.51 81.24 71.45 76.26 64.88 71.50 74.86 74.21
SeqTR pre-trained+finetuned on REC 87.00 90.15 83.59 78.69 84.51 71.87 - 82.69 83.37
SeqTR on RES 67.26 69.79 64.12 54.14 58.93 48.19 - 55.67 55.64
SeqTR* denotes that its visual encoder is initialized with yolov3.weights, while the visual encoder of the rest are initialized with darknet.weights.

Contributing

Our codes are highly modularized and flexible to be extended to new architectures,. For instance, one can register new components such as head, fusion to promote your research ideas, or register new data augmentation techniques just as in mmdetection library. Feel free to play :-).

Citation

@article{zhu2022seqtr,
  title={SeqTR: A Simple yet Universal Network for Visual Grounding},
  author={Zhu, ChaoYang and Zhou, YiYi and Shen, YunHang and Luo, Gen and Pan, XingJia and Lin, MingBao and Chen, Chao and Cao, LiuJuan and Sun, XiaoShuai and Ji, RongRong},
  journal={arXiv preprint arXiv:2203.16265},
  year={2022}
}

Acknowledgement

Our code is built upon the open-sourced mmcv and mmdetection libraries.

Owner
seanZhuh
what/why then how
seanZhuh
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023