Uni-Fold: Training your own deep protein-folding models.

Related tags

Deep LearningUni-Fold
Overview

Uni-Fold: Training your own deep protein-folding models.

This package provides and implementation of a trainable, Transformer-based deep protein folding model. We modified the open-source code of DeepMind AlphaFold v2.0 and provided code to train the model from scratch. See the reference and the repository of DeepMind AlphaFold v2.0. To train your own Uni-Fold models, please follow the steps below:

1. Install the environment.

Run the following code to install the dependencies of Uni-Fold:

  conda create -n unifold python=3.8.10 -y
  conda activate unifold
  ./install_dependencies.sh

Uni-Fold has been tested for Python 3.8.10, CUDA 11.1 and OpenMPI 4.1.1. We recommend using Conda >= 4.10 when installing the environment: using Conda with lower level may lead to some conflicts between packages.

2. Prepare data before training.

Before you start to train your own folding models, you shall prepare the features and labels of the training proteins. Features of proteins mainly include the amino acid sequence, MSAs and templates of proteins. These messages should be contained in a pickle file /features.pkl for each training protein. Uni-Fold provides scripts to process input FASTA files, relying on several external databases and tools. Labels are CIF files containing the structures of the proteins.

2.1 Datasets and external tools.

Uni-Fold adopts the same data processing pipeline as AlphaFold2. We kept the scripts of downloading corresponding databases for searching sequence homologies and templates in the AlphaFold2 repo. Use the command

  bash scripts/download_all_data.sh /path/to/database/directory

to download all required databases of Uni-Fold.

If you successfully installed the Conda environment in Section 1, external tools of search homogenous sequences and templates should be installed properly. As an alternative, you can customize the parameters of feature preparation script to refer to your own databases and tools.

2.2 Run the preparation code.

An example command of running the feature preparation pipeline would be

  python generate_pkl_features.py \
    --fasta_dir ./example_data/fasta \
    --output_dir ./out \
    --data_dir /path/to/database/directory \
    --num_workers 1

This command automatically processes all FASTA files under fasta_dir, and dumps the results to output_dir. Note that each FASTA file should contain only one sequence. The default number of cpu used in hhblits and jackhmmer are 4 and 8. You can modify them in unifold/data/tools/hhblits.py and unifold/data/tools/jackhmmer.py, respectively.

2.3 Organize your training data.

Uni-Fold uses the class DataSystem to automatically sample and load the training entries. To make everything goes right, you shall pay attention to how the training data is organized. Two directories should be established, one with input features (features.pkl files, referred as features_dir) and the other with labels (*.cif files, referred as mmcif_dir). The feature directory should have its files named as _ _ /features.pkl , and the label directory should have its files named as .cif . Users shall make sure that all proteins used for training have their corresponding labels. See ./example_data/features and ./example_data/mmcif for instances of features_dir and mmcif_dir.

3. Train Uni-Fold.

3.1 Configuration.

Before you conduct any actual training processes, please make sure that you correctly configured the code. Modify the training configurations in unifold/train/train_config.py. We annotated the default configurations to reproduce AlphaFold in the script. Specifically, modify the data setups in unifold/train/train_config.py:

"data": {
  "train": {
    "features_dir": "where/training/protein/features/are/stored/",
    "mmcif_dir": "where/training/mmcif/files/are/stored/",
    "sample_weights": "which/specifies/proteins/for/training.json"
  },
  "eval": {
    "features_dir": "where/validation/protein/features/are/stored/",
    "mmcif_dir": "where/validation/mmcif/files/are/stored/",
    "sample_weights": "which/specifies/proteins/for/training.json"
  }
}

The specified data should be contained in two folders, namely a features_dir and a mmcif_dir. Organizations of the two directories are introduced in Section 2.3. Meanwhile, if you want to specify the subset of training data under the directories, or assign customized sample weights for each protein, write a json file and feed its path to sample_weights. This is optional, as you can leave it as None (and the program will attempt to use all entries under features_dir with uniform weights). The json file should be a dictionary contains the basename of directories of protein features ([pdb_id]_[model_id]_[chain_id]) and the sample weight of each protein in the training process (integer or float), such as:

{"1am9_1_C": 82, "1amp_1_A": 291, "1aoj_1_A": 60, "1aoz_1_A": 552}

or for uniform sampling, simply using a list of protein entries suffices:

["1am9_1_C", "1amp_1_A", "1aoj_1_A", "1aoz_1_A"]

Meanwhile, the configurations of models can be edited in unifold/model/config.py for users who want to customize their own folding models.

3.2 Run the training code!

To train the model on a single node without MPI, run

python train.py

You can also train the model using MPI (or workload managers that supports MPI, such as PBS or Slurm) by running:

mpirun -n <numer_of_gpus> python train.py

In either way, make sure you properly configurate the option use_mpi in unifold/train/train_config.py.

4. Inference with trained models.

4.1 Inference from features.pkl.

We provide the run_from_pkl.py script to support inferencing protein structures from features.pkl inputs. A demo command would be

python run_from_pkl.py \
  --pickle_dir ./example_data/features \
  --model_names model_2 \
  --model_paths /path/to/model_2.npz \
  --output_dir ./out

or

python run_from_pkl.py \
  --pickle_paths ./example_data/features/1ak0_1_A/features.pkl \
  --model_names model_2 \
  --model_paths /path/to/model_2.npz \
  --output_dir ./out

The command will generate structures of input features from different input models (in PDB format), the running time of each component, and corresponding residue-wise confidence score (predicted LDDT, or pLDDT).

4.2 Inference from FASTA files.

Essentially, inferencing the structures from given FASTA files includes two steps, i.e. generating the pickled features and predicting structures from them. We provided a script, run_from_fasta.py, as a more friendly user interface. An example usage would be

python run_from_pkl.py \
  --fasta_paths ./example_data/fasta/1ak0_1_A.fasta \
  --model_names model_2 \
  --model_paths /path/to/model_2.npz \
  --data_dir /path/to/database/directory
  --output_dir ./out

4.3 Generate MSA with MMseqs2.

It may take hours and much memory to generate MSA for sequences,especially for long sequences. In this condition, MMseqs2 may be a more efficient way. It can be used in the following way after it is installed:

# download and build database
mkdir mmseqs_db && cd mmseqs_db
wget http://wwwuser.gwdg.de/~compbiol/colabfold/uniref30_2103.tar.gz
wget http://wwwuser.gwdg.de/~compbiol/colabfold/colabfold_envdb_202108.tar.gz
tar xzvf uniref30_2103.tar.gz
tar xzvf colabfold_envdb_202108.tar.gz
mmseqs tsv2exprofiledb uniref30_2103 uniref30_2103_db
mmseqs tsv2exprofiledb colabfold_envdb_202108 colabfold_envdb_202108_db
mmseqs createindex uniref30_2103_db tmp
mmseqs createindex colabfold_envdb_202108_db tmp
cd ..

# MSA search
./scripts/colabfold_search.sh mmseqs "query.fasta" "mmseqs_db/" "result/" "uniref30_2103_db" "" "colabfold_envdb_202108_db" "1" "0" "1"

5. Changes from AlphaFold to Uni-Fold.

  • We implemented classes and methods for training and inference pipelines by adding scripts under unifold/train and unifold/inference.
  • We added scripts for installing the environment, training and inferencing.
  • Files under unifold/common, unifold/data and unifold/relax are minimally altered for re-structuring the repository.
  • Files under unifold/model are moderately altered to allow mixed-precision training.
  • We removed unused scripts in training AlphaFold model.

6. License and disclaimer.

6.1 Uni-Fold code license.

Copyright 2021 Beijing DP Technology Co., Ltd.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

6.2 Use of third-party software.

Use of the third-party software, libraries or code may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code is subject to any such terms and you should check that you can comply with any applicable restrictions or terms and conditions before use.

6.3 Contributing to Uni-Fold.

Uni-Fold is an ongoing project. Our target is to design better protein folding models and to apply them in real scenarios. We welcome the community to join us in developing the repository together, including but not limited to 1) reports and fixes of bugs,2) new features and 3) better interfaces. Please refer to CONTRIBUTING.md for more information.

Owner
DeepModeling
Define the future of scientific computing together
DeepModeling
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022