MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Overview

Introduction

Tweet

MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identify similar or dissimilar subsequences compared to your query. At its core, MASS computes Euclidean distances under z-normalization in an efficient manner and is domain agnostic in nature. It is the fundamental algorithm that the matrix profile algorithm is built on top of.

mass-ts is a python 2 and 3 compatible library.

Free software: Apache Software License 2.0

Features

Original Author's Algorithms

  • MASS - the first implementation of MASS
  • MASS2 - the second implementation of MASS that is significantly faster. Typically this is the one you will use.
  • MASS3 - a piecewise version of MASS2 that can be tuned to your hardware. Generally this is used to search very large time series.
  • MASS_weighted - TODO

Library Specific Algorithms

  • MASS2_batch - a batch version of MASS2 that reduces overall memory usage, provides parallelization and enables you to find top K number of matches within the time series. The goal of using this implementation is for very large time series similarity search.
  • top_k_motifs - find the top K number of similar subsequences to your given query. It returns the starting index of the subsequence.
  • top_k_discords - find the top K number of dissimilar subsequences to your given query. It returns the starting index of the subsequence.
  • MASS2_gpu - a GPU implementation of MASS2 leveraging the Python library CuPy.

Installation

pip install mass-ts

GPU Support

Please follow the installation guide for CuPy. It covers what drivers and environmental dependencies are required. Once you are finished there, you can install GPU support for the algorithms.

pip install mass-ts[gpu]

Example Usage

A dedicated repository for practical examples can be found at the mass-ts-examples repository.

import numpy as np
import mass_ts as mts

ts = np.loadtxt('ts.txt')
query = np.loadtxt('query.txt')

# mass
distances = mts.mass(ts, query)

# mass2
distances = mts.mass2(ts, query)

# mass3
distances = mts.mass3(ts, query, 256)

# mass2_gpu
distances = mts.mass2_gpu(ts, query)

# mass2_batch
# start a multi-threaded batch job with all cpu cores and give me the top 5 matches.
# note that batch_size partitions your time series into a subsequence similarity search.
# even for large time series in single threaded mode, this is much more memory efficient than
# MASS2 on its own.
batch_size = 10000
top_matches = 5
n_jobs = -1
indices, distances = mts.mass2_batch(ts, query, batch_size, 
    top_matches=top_matches, n_jobs=n_jobs)

# find minimum distance
min_idx = np.argmin(distances)

# find top 4 motif starting indices
k = 4
exclusion_zone = 25
top_motifs = mts.top_k_motifs(distances, k, exclusion_zone)

# find top 4 discord starting indices
k = 4
exclusion_zone = 25
top_discords = mts.top_k_discords(distances, k, exclusion_zone)

Citations

Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy Viswanathan, Chetan Kumar Gupta and Eamonn Keogh (2015), The Fastest Similarity Search Algorithm for Time Series Subsequences under Euclidean Distance, URL: http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

Owner
Matrix Profile Foundation
Enabling community members to easily interact with the Matrix Profile algorithms through education, support and software.
Matrix Profile Foundation
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022