Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

Related tags

Deep LearningDenseNAS
Overview

DenseNAS

The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search.

Neural architecture search (NAS) has dramatically advanced the development of neural network design. We revisit the search space design in most previous NAS methods and find the number of blocks and the widths of blocks are set manually. However, block counts and block widths determine the network scale (depth and width) and make a great influence on both the accuracy and the model cost (FLOPs/latency).

We propose to search block counts and block widths by designing a densely connected search space, i.e., DenseNAS. The new search space is represented as a dense super network, which is built upon our designed routing blocks. In the super network, routing blocks are densely connected and we search for the best path between them to derive the final architecture. We further propose a chained cost estimation algorithm to approximate the model cost during the search. Both the accuracy and model cost are optimized in DenseNAS. search_space

Updates

  • 2020.6 The search code is released, including both MobileNetV2- and ResNet- based search space.

Requirements

  • pytorch >= 1.0.1
  • python >= 3.6

Search

  1. Prepare the image set for search which contains 100 classes of the original ImageNet dataset. And 20% images are used as the validation set and 80% are used as the training set.

    1). Generate the split list of the image data.
    python dataset/mk_split_img_list.py --image_path 'the path of your ImageNet data' --output_path 'the path to output the list file'

    2). Use the image list obtained above to make the lmdb file.
    python dataset/img2lmdb.py --image_path 'the path of your ImageNet data' --list_path 'the path of your image list generated above' --output_path 'the path to output the lmdb file' --split 'split folder (train/val)'

  2. Build the latency lookup table (lut) of the search space using the following script or directly use the ones provided in ./latency_list/.
    python -m run_apis.latency_measure --save 'output path' --input_size 'the input image size' --meas_times 'the times of op measurement' --list_name 'the name of the output lut' --device 'gpu or cpu' --config 'the path of the yaml config'

  3. Search for the architectures. (We perform the search process on 4 32G V100 GPUs.)
    For MobileNetV2 search:
    python -m run_apis.search --data_path 'the path of the split dataset' --config configs/imagenet_search_cfg_mbv2.yaml
    For ResNet search:
    python -m run_apis.search --data_path 'the path of the split dataset' --config configs/imagenet_search_cfg_resnet.yaml

Train

  1. (Optional) We pack the ImageNet data as the lmdb file for faster IO. The lmdb files can be made as follows. If you don't want to use lmdb data, just set __C.data.train_data_type='img' in the training config file imagenet_train_cfg.py.

    1). Generate the list of the image data.
    python dataset/mk_img_list.py --image_path 'the path of your image data' --output_path 'the path to output the list file'

    2). Use the image list obtained above to make the lmdb file.
    python dataset/img2lmdb.py --image_path 'the path of your image data' --list_path 'the path of your image list' --output_path 'the path to output the lmdb file' --split 'split folder (train/val)'

  2. Train the searched model with the following script by assigning __C.net_config with the architecture obtained in the above search process. You can also train your customized model by redefine the variable model in retrain.py.
    python -m run_apis.retrain --data_path 'The path of ImageNet data' --load_path 'The path you put the net_config of the model'

Evaluate

  1. Download the related files of the pretrained model and put net_config and weights.pt into the model_path
  2. python -m run_apis.validation --data_path 'The path of ImageNet data' --load_path 'The path you put the pre-trained model'

Results

For experiments on the MobileNetV2-based search space, DenseNAS achieves 75.3% top-1 accuracy on ImageNet with only 361MB FLOPs and 17.9ms latency on a single TITAN-XP. The larger model searched by DenseNAS achieves 76.1% accuracy with only 479M FLOPs. DenseNAS further promotes the ImageNet classification accuracies of ResNet-18, -34 and -50-B by 1.5%, 0.5% and 0.3% with 200M, 600M and 680M FLOPs reduction respectively.

The comparison of model performance on ImageNet under the MobileNetV2-based search spaces.

The comparison of model performance on ImageNet under the ResNet-based search spaces.

Our pre-trained models can be downloaded in the following links. The complete list of the models can be found in DenseNAS_modelzoo.

Model FLOPs Latency Top-1(%)
DenseNAS-Large 479M 28.9ms 76.1
DenseNAS-A 251M 13.6ms 73.1
DenseNAS-B 314M 15.4ms 74.6
DenseNAS-C 361M 17.9ms 75.3
DenseNAS-R1 1.61B 12.0ms 73.5
DenseNAS-R2 3.06B 22.2ms 75.8
DenseNAS-R3 3.41B 41.7ms 78.0

archs

Citation

If you find this repository/work helpful in your research, welcome to cite it.

@inproceedings{fang2019densely,
  title={Densely connected search space for more flexible neural architecture search},
  author={Fang, Jiemin and Sun, Yuzhu and Zhang, Qian and Li, Yuan and Liu, Wenyu and Wang, Xinggang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023