The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Overview

Openspoor

alt text

The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway. Its goal is to be publicly available and function as an open source package.

Currently the openspoor package allows the following transformations:

Type of input:

  • Point data

These transformations can be performed between the following systems:

Geographical systems:

  • WGS84 coordinate system (commonly known as GPS coordinates)
  • EPSG:28992 coordinate system (commonly known in the Netherlands as Rijksdriehoek)

Topological systems:

  • Geocode and geocode kilometrering
  • Spoortak and spoortak kilometrering (unavailable on switches)

Getting Started

Installation

Installation using anaconda

  • Clone the "openspoor" repository
    • pip install openspoor
  • create an environment:
    • conda create -n openspoorenv python==3.6.12
  • activate the environment:
    • conda activate openspoorenv
  • If you are installing on Windows OS with Anaconda, first install rtree and geopandas through anaconda with the commands:
    • conda install rtree==0.8.3 -y
    • conda install geopandas==0.6.1 -y
  • In the root directory of the repository, execute the command:
    • pip install -r requirements.txt
  • In the root directory of the repository, execute the command:
    • pip install .
  • In the root directory of the repository, execute the command:
    • python -m pytest
  • If all the test succeed, the openspoor package is ready to use and you are on the right "track"!

Demonstration notebook

In the future a notebook will be added that demonstrates the use of the openspoor package. For now one can take the code in the acceptance tests as example of how to use the package.

Dependencies

The transformations available in the openspoor package rely completely on data and API's made available at https://mapservices.prorail.nl/. Be aware of this dependency and specifically of the following possible issues:

  • The use of API's on mapservices.prorail.nl is changed
  • The output data of the mapservices API's is changed (with added, removed or missing columns for instance)

Furthermore mapservices.prorail.nl only provides current information about the topological systems used in Dutch Railways. As the topological systems tend to change with time, due to changing infrastructure and naming conventions, the current topological system is not necessarily sufficient to provide transformations on historical data. In the future we hope to add historical topological systems as part of the functionality of this package in such a way that it is available publicly.

Structure

The structure of the openspoor package is largely split in two categories.

MapservicesData

The MapservicesData classes use mapservices.prorail.nl API's to retrieve the necessary data to perform transformations. The essentially function as an interface with the topological systems used by ProRail.

  • PUICMapservices provides general data about railway tracks (spoor) and switches (wissel and kruisingbenen). This contains information regarding Geocode, geocodekilometrering, but also Spoortak identificatie.
  • SpoortakMapservices provides information about railway tracks concerning Spoortak identificatie and lokale kilometrering.

Transformers

The various transformers use the geopandas dataframes obtained by MapservicesData objects to add additional geographical or topological systems to a given geopandas input dataframe. The current transformers only function for geopandas dataframes containing Point data. The available transformers are:

  • TransformerCoordinatesToSpoor: transforms WGS84 or EPSG:28992 coordinates to spoortak and lokale kilomtrering as well as geocode and geocode kilometrering.
  • TransformerGeocodeToCoordinates: transforms geocode and geocode kilometrering to WGS84 or EPSG:28992 coordinates.
  • TransformerSpoorToCoordinates: transforms spoortak and lokale kilometrering to WGS84 or EPSG:28992 coordinates.

Release History

  • 0.1.0
    • The first proper release
    • ADD: transform point data between geographical systems.
  • 0.0.1
    • Work in progress

Contributing

The openspoor package stimulates every other person the contribute to the package. To do so:

  • Fork it
  • Create your feature branch (git checkout -b feature/fooBar)
  • Commit your changes (git commit -am 'Add some fooBar')
  • Push to the branch (git push origin feature/fooBar)
  • Create a new Pull Request with 3 obligated reviewers from the developement team.

You could also contribute by thinking of possible new features. The current backlog is:

  • Make the package available for the "spoor" industry.
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022