Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Related tags

Deep LearningRNW
Overview

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Kun Wang, Zhenyu Zhang, Zhiqiang Yan, Xiang Li, Baobei Xu, Jun Li and Jian Yang

PCA Lab, Nanjing University of Science and Technology; Tencent YouTu Lab; Hikvision Research Institute

Introduction

This is the official repository for Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark. You can find our paper at arxiv. In this repository, we release the training and testing code, as well as the data split files of RobotCar-Night and nuScenes-Night.

image-20211002220051137

Dependency

  • python>=3.6
  • torch>=1.7.1
  • torchvision>=0.8.2
  • mmcv>=1.3
  • pytorch-lightning>=1.4.5
  • opencv-python>=3.4
  • tqdm>=4.53

Dataset

The dataset used in our work is based on RobotCar and nuScenes. Please visit their official website to download the data (We only used a part of these datasets. If you just want to run the code, (2014-12-16-18-44-24, 2014-12-09-13-21-02) of RobotCar and (Package 01, 02, 05, 09, 10) of nuScenes is enough). To produce the ground truth depth, you can use the above official toolboxes. After preparing datasets, we strongly recommend you to organize the directory structure as follows. The split files are provided in split_files/.

RobotCar-Night root directory
|__Package name (e.g. 2014-12-16-18-44-24)
   |__depth (to store the .npy ground truth depth maps)
      |__ground truth depth files
   |__rgb (to store the .png color images)
      |__color image files
   |__intrinsic.npy (to store the camera intrinsics)
   |__test_split.txt (to store the test samples)
   |__train_split.txt (to store the train samples)
nuScenes-Night root directory
|__sequences (to store sequence data)
   |__video clip number (e.g. 00590cbfa24a430a8c274b51e1c71231)
      |__file_list.txt (to store the image file names in this video clip)
      |__intrinsic.npy (to store the camera intrinsic of this video clip)
      |__image files described in file_list.txt
|__splits (to store split files)
   |__split files with name (day/night)_(train/test)_split.txt
|__test
   |__color (to store color images for testing)
   |__gt (to store ground truth depth maps w.r.t color)

Note: You also need to configure the dataset path in datasets/common.py. The original resolution of nuScenes is too high, so we reduce its resolution to half when training.

Training

Our model is trained using Distributed Data Parallel supported by Pytorch-Lightning. You can train a RNW model on one dataset through the following two steps:

  1. Train a self-supervised model on daytime data, by

    python train.py mono2_(rc/ns)_day number_of_your_gpus
  2. Train RNW by

    python train.py rnw_(rc/ns) number_of_your_gpus

Since there is no eval split, checkpoints will be saved every two epochs.

Testing

You can run the following commands to test on RobotCar-Night

python test_robotcar_disp.py day/night config_name checkpoint_path
cd evaluation
python eval_robotcar.py day/night

To test on nuScenes-Night, you can run

python test_nuscenes_disp.py day/night config_name checkpoint_path
cd evaluation
python eval_nuscenes.py day/night

Besides, you can use the scripts batch_eval_robotcar.py and batch_eval_nuscenes.py to automatically execute the above commands.

Citation

If you find our work useful, please consider citing our paper

@InProceedings{Wang_2021_ICCV,
    author    = {Wang, Kun and Zhang, Zhenyu and Yan, Zhiqiang and Li, Xiang and Xu, Baobei and Li, Jun and Yang, Jian},
    title     = {Regularizing Nighttime Weirdness: Efficient Self-Supervised Monocular Depth Estimation in the Dark},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {16055-16064}
}
Owner
kunwang
kunwang
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022