Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Overview

Dangers of Bayesian Model Averaging under Covariate Shift

This repository contains the code to reproduce the experiments in the paper Dangers of Bayesian Model Averaging under Covariate Shift by Pavel Izmailov, Patrick Nicholson, Sanae Lotfi and Andrew Gordon Wilson.

The code is forked from the Google Research BNN HMC repo.

Introduction

Approximate Bayesian inference for neural networks is considered a robust alternative to standard training, often providing good performance on out-of-distribution data. However, it was recently shown that Bayesian neural networks (BNNs) with high fidelity inference through Hamiltonian Monte Carlo (HMC) provide shockingly poor performance under covariate shift. For example, below we show that a ResNet-20 BNN approximated with HMC underperforms a maximum a-posteriori (MAP) solution by 25% on the pixelate-corrupted CIFAR-10 test set. This result is particularly surprising given that on the in-distribution test data, the BNN outperforms the MAP solution by over 5%. In this work, we seek to understand, further demonstrate, and help remedy this concerning behaviour.

As an example, let us consider a fully-connected network on MNIST. MNIST contains many dead pixels, i.e. pixels near the boundary that are zero for all training images. The corresponding weights in the first layer of the network are always multiplied by zero, and have no effect on the likelihood of the training data. Consequently, in a Bayesian neural network, these weights will be sampled from the prior. A MAP solution on the other hand will set these parameters close to zero. In the animation, we visualize the weights in the first layer of a Bayesian neural network and a MAP solution. For each sample, we show the value of the weight corresponding to the highlighted pixel.

If at test time the data is corrupted, e.g. by Gaussian noise, and the pixels near the boundary of the image are activated, the MAP solution will ignore these pixels, while the predictions of the BNN will be significantly affected.

In the paper, we extend this reasoning to general linear dependencies between input features for both fully connected and convolutional Bayesian neural networks. We also propose EmpCov, a prior based on the empirical covariance of the data which significantly improves robustness of BNNs to covariate shift. We implement EmpCov as well as other priors for Bayesian neural networks in this repo.

Requirements

We use provide a requirements.txt file that can be used to create a conda environment to run the code in this repo:

conda create --name <env> --file requirements.txt

Example set-up using pip:

pip install tensorflow

pip install --upgrade pip
pip install --upgrade jax jaxlib==0.1.65+cuda112 -f \
https://storage.googleapis.com/jax-releases/jax_releases.html

pip install git+https://github.com/deepmind/dm-haiku
pip install tensorflow_datasets
pip install tabulate
pip install optax

Please see the JAX repo for the latest instructions on how to install JAX on your hardware.

File Structure

The implementations of HMC and other methods forked from the BNN HMC repo are in the bnn_hmc folder. The main training scripts are run_hmc.py for HMC and run_sgd.py for SGD respectively. In the notebooks folder we show examples of how to extract the covariance matrices for EmpCov priors, and evaluate the results under various corruptions.

.
+-- bnn_hmc/
|   +-- core/
|   |   +-- hmc.py (The Hamiltonian Monte Carlo algorithm)
|   |   +-- sgmcmc.py (SGMCMC methods as optax optimizers)
|   |   +-- vi.py (Mean field variational inference)
|   +-- utils/ (Utility functions used by the training scripts)
|   |   +-- train_utils.py (The training epochs and update rules)
|   |   +-- models.py (Models used in the experiments)
|   |   +-- losses.py (Prior and likelihood functions)
|   |   +-- data_utils.py (Loading and pre-processing the data)
|   |   +-- optim_utils.py (Optimizers and learning rate schedules)
|   |   +-- ensemble_utils.py (Implementation of ensembling of predictions)
|   |   +-- metrics.py (Metrics used in evaluation)
|   |   +-- cmd_args_utils.py (Common command line arguments)
|   |   +-- script_utils.py (Common functionality of the training scripts)
|   |   +-- checkpoint_utils.py (Saving and loading checkpoints)
|   |   +-- logging_utils.py (Utilities for logging printing the results)
|   |   +-- precision_utils.py (Controlling the numerical precision)
|   |   +-- tree_utils.py (Common operations on pytree objects)
+-- notebooks/  
|   +-- cnn_robustness_cifar10.ipynb (Creates CIFAR-10 CNN figures used in paper)  
|   +-- mlp_robustness_mnist.ipynb (Creates MNIST MLP figures used in paper)
|   +-- cifar10_cnn_extract_empcov.ipynb (Constructs EmpCov prior covariance matrix for CIFAR-10 CNN)
|   +-- mnist_extract_empcov.ipynb (Constructs EmpCov prior covariance matrices for CIFAR-10 CNN and MLP)
+-- empcov_covs/
|   +-- cifar_cnn_pca_inv_cov.npy (EmpCov inverse prior covariance for CIFAR-10 CNN)
|   +-- mnist_cnn_pca_inv_cov.npy (EmpCov inverse prior covariance for MNIST CNN)
|   +-- mnist_mlp_pca_inv_cov.npy (EmpCov inverse prior covariance for MNIST MLP)
+-- run_hmc.py (HMC training script)
+-- run_sgd.py (SGD training script)

Training Scripts

The training scripts are adapted from the Google Research BNN HMC repo. For completeness, we provide full details about the command line arguments here.

Common command line arguments:

  • seed — random seed
  • dir — training directory for saving the checkpoints and tensorboard logs
  • dataset_name — name of the dataset, e.g. cifar10, cifar100, mnist
  • subset_train_to — number of datapoints to use from the dataset; by default, the full dataset is used
  • model_name — name of the neural network architecture, e.g. lenet, resnet20_frn_swish, cnn_lstm, mlp_regression_small
  • weight_decay — weight decay; for Bayesian methods, weight decay determines the prior variance (prior_var = 1 / weight_decay)
  • temperature — posterior temperature (default: 1)
  • init_checkpoint — path to the checkpoint to use for initialization (optional)
  • tabulate_freq — frequency of tabulate table header logging
  • use_float64 — use float64 precision (does not work on TPUs and some GPUs); by default, we use float32 precision
  • prior_family — type of prior to use; must be one of Gaussian, ExpFNormP, Laplace, StudentT, SumFilterLeNet, EmpCovLeNet or EmpCovMLP; see the next section for more details

Prior Families

In this repo we implement several prior distribution families. Some of the prior families have additional command line arguments specifying the parameters of the prior:

  • Gaussian — iid Gaussian prior centered at 0 with variance equal to 1 / weight_decay
  • Laplace — iid Laplace prior centered at 0 with variance equal to 1 / weight_decay
  • StudentT — iid Laplace prior centered at 0 with studentt_degrees_of_freedom degrees of freedom and scaled by 1 / weight_decay
  • ExpFNormP — iid ExpNorm prior centered at 0 defined in the paper. expfnormp_power specifies the power under the exponent in the prior, and 1 / weight_decay defines the scale of the prior
  • EmpCovLeNet and EmpCovMLPEmpCov priors with the inverse of empirical covariance matrix of the data as a .npy array provided as empcov_invcov_ckpt; empcov_wd allows to rescale the covariance matrix for the first layer.
  • SumFilterLeNetSumFilter prior presented in the paper; 1 / sumfilterlenet_weight_decay determines the prior variance for the sum of the filter weights in the first layer

Some prior types require additional arguments, such as empcov_pca_wd and studentt_degrees_of_freedom; run scripts with --help for full details.

Running HMC

To run HMC, you can use the run_hmc.py training script. Arguments:

  • step_size — HMC step size
  • trajectory_len — HMC trajectory length
  • num_iterations — Total number of HMC iterations
  • max_num_leapfrog_steps — Maximum number of leapfrog steps allowed; meant as a sanity check and should be greater than trajectory_len / step_size
  • num_burn_in_iterations — Number of burn-in iterations (default: 0)

Examples

CNN on CIFAR-10 with different priors:

# Gaussian prior
python3 run_hmc.py --seed=0 --weight_decay=100 --temperature=1. \
  --dir=runs/hmc/cifar10/gaussian/ --dataset_name=cifar10 \
  --model_name=lenet --step_size=3.e-05 --trajectory_len=0.15 \
  --num_iterations=100 --max_num_leapfrog_steps=5300 \
  --num_burn_in_iterations=10

# Laplace prior
python3 run_hmc.py --seed=0 --weight_decay=100 --temperature=1. \
  --dir=runs/hmc/cifar10/laplace --dataset_name=cifar10 \
  --model_name=lenet --step_size=3.e-05 --trajectory_len=0.15 \
  --num_iterations=100 --max_num_leapfrog_steps=5300 \
  --num_burn_in_iterations=10 --prior_family=Laplace

# Gaussian prior, T=0.1
python3  run_hmc.py --seed=0 --weight_decay=3 --temperature=0.01 \
  --dir=runs/hmc/cifar10/lenet/temp --dataset_name=cifar10 \
  --model_name=lenet --step_size=1.e-05 --trajectory_len=0.1 \
  --num_iterations=100 --max_num_leapfrog_steps=10000 \
  --num_burn_in_iterations=10

# EmpCov prior
python3 run_hmc.py --seed=0 --weight_decay=100. --temperature=1. \
  --dir=runs/hmc/cifar10/EmpCov --dataset_name=cifar10 \
  --model_name=lenet --step_size=1.e-4 --trajectory_len=0.157 \ 
  --num_iterations=100 --max_num_leapfrog_steps=2000 \
  --num_burn_in_iterations=10 --prior_family=EmpCovLeNet \
  --empcov_invcov_ckpt=empcov_covs/cifar_cnn_pca_inv_cov.npy \
  --empcov_wd=100.

We ran these commands on a machine with 8 NVIDIA Tesla V-100 GPUs.

MLP on MNIST using different priors:

# Gaussian prior
python3 run_hmc.py --seed=2 --weight_decay=100  \
  --dir=runs/hmc/mnist/gaussian \
  --dataset_name=mnist --model_name=mlp_classification \
  --step_size=1.e-05 --trajectory_len=0.15 \
  --num_iterations=100 --max_num_leapfrog_steps=15500 \
  --num_burn_in_iterations=10

# Laplace prior
python3 run_hmc.py --seed=0 --weight_decay=3.0 \
  --dir=runs/hmc/mnist/laplace --dataset_name=mnist \
  --model_name=mlp_classification --step_size=6.e-05 \
  --trajectory_len=0.9 --num_iterations=100 \
  --max_num_leapfrog_steps=15500 \
  --num_burn_in_iterations=10 --prior_family=Laplace

# Student-T prior
python3 run_hmc.py --seed=0 --weight_decay=10. \
  --dir=runs/hmc/mnist/studentt --dataset_name=mnist \
  --model_name=mlp_classification --step_size=1.e-4 --trajectory_len=0.49 \ 
  --num_iterations=100 --max_num_leapfrog_steps=5000 \
  --num_burn_in_iterations=10 --prior_family=StudentT \
  --studentt_degrees_of_freedom=5.

# Gaussian prior, T=0.1
python3 run_hmc.py --seed=11 --weight_decay=100 \
  --temperature=0.01 --dir=runs/hmc/mnist/temp \
  --dataset_name=mnist --model_name=mlp_classification \
  --step_size=6.3e-07 --trajectory_len=0.015 \
  --num_iterations=100 --max_num_leapfrog_steps=25500 \
  --num_burn_in_iterations=10

# EmpCov prior
python3 run_hmc.py --seed=0 --weight_decay=100 \
  --dir=runs/hmc/mnist/empcov --dataset_name=mnist \
  --model_name=mlp_classification --step_size=1.e-05 \
  --trajectory_len=0.15 --num_iterations=100 \
  --max_num_leapfrog_steps=15500 \
  --num_burn_in_iterations=10 --prior_family=EmpCovMLP \
  --empcov_invcov_ckpt=empcov_covs/mnist_mlp_pca_inv_cov.npy \
  --empcov_wd=100  

This script can be ran on a single GPU or a TPU V3-8.

Running SGD

To run SGD, you can use the run_sgd.py training script. Arguments:

  • init_step_size — Initial SGD step size; we use a cosine schedule
  • num_epochs — total number of SGD epochs iterations
  • batch_size — batch size
  • eval_freq — frequency of evaluation (epochs)
  • save_freq — frequency of checkpointing (epochs)
  • momentum_decay — momentum decay parameter for SGD

Examples

MLP on MNIST:

python3 run_sgd.py --seed=0 --weight_decay=100 --dir=runs/sgd/mnist/ \
  --dataset_name=mnist --model_name=mlp_classification \
  --init_step_size=1e-7 --eval_freq=10 --batch_size=80 \
  --num_epochs=100 --save_freq=100

CNN on CIFAR-10:

python3 run_sgd.py --seed=0 --weight_decay=100. --dir=runs/sgd/cifar10/lenet \
  --dataset_name=cifar10 --model_name=lenet --init_step_size=1e-7 --batch_size=80 \
  --num_epochs=300 --save_freq=300

To train a deep ensemble, we simply train multiple copies of SGD with different random seeds.

Results

We consider the corrupted versions of the MNIST and CIFAR-10 datasets with both fully-connected (mlp_classification) and convolutional (lenet) architectures. Additionally, we consider domain shift problems from MNIST to SVHN and from CIFAR-10 to STL-10. We apply the EmpCov prior to the first layer of Bayesian neural networks (BNNs), and a Gaussian prior to all other layers using the commands in the examples. The following figure shows the results for: deep ensembles, maximum-a-posterior estimate obtained through SGD, BNNs with a Gaussian prior, and BNNs with our novel EmpCov prior. EmpCov prior improves the robustness of BNNs to covariate shift, leading to better results on most corruptions and a competitive performance with deep ensembles for both fully-connected and convolutional architectures.

combined_resolution png-1

Owner
Pavel Izmailov
Pavel Izmailov
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023