Deep learning model, heat map, data prepo

Overview

DEEP LEARNING ON USA DEMOCRATES DEBATE

By Pamela Dekas

import sys
import csv
import re 
import nltk
import string
import unicodedata
from textblob import TextBlob
from collections import Counter
import pandas as pd
import numpy as np
from wordcloud import WordCloud
from nltk.classify import * 
from nltk.corpus import stopwords
from sklearn.metrics import f1_score, roc_auc_score
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import word_tokenize
import nltk.classify.util
import matplotlib.pyplot as plt
from string import punctuation 
from nltk.corpus import stopwords
from wordcloud import STOPWORDS
import os
from sklearn.model_selection import train_test_split
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence, text
from keras.callbacks import EarlyStopping
Using TensorFlow backend.



---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)


   
     in 
    
     ()
     22 import os
     23 from sklearn.model_selection import train_test_split
---> 24 from keras.datasets import imdb
     25 from keras.models import Sequential
     26 from keras.layers import Dense


~\Anaconda3\lib\site-packages\keras\__init__.py in 
     
      ()
      1 from __future__ import absolute_import
      2 
----> 3 from . import utils
      4 from . import activations
      5 from . import applications


~\Anaconda3\lib\site-packages\keras\utils\__init__.py in 
      
       ()
      4 from . import data_utils
      5 from . import io_utils
----> 6 from . import conv_utils
      7 from . import losses_utils
      8 from . import metrics_utils


~\Anaconda3\lib\site-packages\keras\utils\conv_utils.py in 
       
        () 7 from six.moves import range 8 import numpy as np ----> 9 from .. import backend as K 10 11 ~\Anaconda3\lib\site-packages\keras\backend\__init__.py in 
        
         () ----> 1 from .load_backend import epsilon 2 from .load_backend import set_epsilon 3 from .load_backend import floatx 4 from .load_backend import set_floatx 5 from .load_backend import cast_to_floatx ~\Anaconda3\lib\site-packages\keras\backend\load_backend.py in 
         
          () 88 elif _BACKEND == 'tensorflow': 89 sys.stderr.write('Using TensorFlow backend.\n') ---> 90 from .tensorflow_backend import * 91 else: 92 # Try and load external backend. ~\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in 
          
           () 52 53 # Private TF Keras utils ---> 54 get_graph = tf_keras_backend.get_graph 55 # learning_phase_scope = tf_keras_backend.learning_phase_scope # TODO 56 name_scope = tf.name_scope AttributeError: module 'tensorflow.python.keras.backend' has no attribute 'get_graph' 
          
         
        
       
      
     
    
   
speech = pd.read_csv('debate_transcripts_v3_2020-02-26.csv',encoding= 'unicode_escape')
df= pd.DataFrame(speech)
dem_speakers = df["speaker"]
number_of_speakers = len(set(dem_speakers))
print("Nombre de speakers:",number_of_speakers, "speakers")

# Mean duration of speech.
print("temps moyen de parole:",np.mean(df["speaking_time_seconds"]), "seconds")
print("Dataset size:", len(df))
Nombre de speakers: 106 speakers
temps moyen de parole: 16.49230769230769 seconds
Dataset size: 5911
df.info()

   
    
RangeIndex: 5911 entries, 0 to 5910
Data columns (total 6 columns):
date                     5911 non-null object
debate_name              5911 non-null object
debate_section           5911 non-null object
speaker                  5911 non-null object
speech                   5911 non-null object
speaking_time_seconds    5395 non-null float64
dtypes: float64(1), object(5)
memory usage: 277.2+ KB

   
df.groupby('speaker')['speaking_time_seconds'].sum(level=0).nlargest(10).plot.bar()
plt.title('Repartition par temps de parole')
plt.show()

png

debate_time = df.groupby(by=['speaker', 'date']).speaking_time_seconds.sum().nlargest(15)
debate_time.plot()

   

   

png

suppresion des colonnes qui ne seront pas utilisé dans la suite du projet et creation du dataset final###

df=df.drop(['date','debate_name','debate_section','speaking_time_seconds'],1)
df.head(5)
speaker speech
0 Norah O�Donnell Good evening and welcome, the Democratic presi...
1 Gayle King And Super Tuesday is just a week away and this...
2 Norah O�Donnell And CBS News is proud to bring you this debate...
3 Gayle King And we are partnering tonight also with Twitte...
4 Norah O�Donnell Now, here are the rules for the next two hours...

PREPROCESSING

import nltk 
nltk.download('punkt')
stopwords = nltk.corpus.stopwords.words('english')
Tailored_stopwords=('im','ive','mr','weve','dont','well','will','make','us','we',
                      'I','make','got','need','want','think',
                      'going','go','one','thank','going',
                      'way','say','every','re','us','first',
                     'now','said','know','look','done','take',
                     'number','two','three','s','m',"t",
                      'let','don','tell','ve','im','mr','put','maybe','whether','many', 'll','around','thing','Secondly','doesn','lot')
#stopwords = nltk.corpus.stopwords.words('english')
stopwords = set(STOPWORDS)
stopwords= stopwords.union(Tailored_stopwords)
[nltk_data] Downloading package punkt to C:\Users\pamel.DESKTOP-O19M7N
[nltk_data]     F\AppData\Roaming\nltk_data...
[nltk_data]   Package punkt is already up-to-date!
def Text_cleansing(speech):
    speech = re.sub('@[A-Za-z0–9]+', '', str(speech))
    speech = re.sub('#', '', speech) # Enlever les '#' hash tag
    speech = re.sub('rt', '', speech)
    speech=re.sub(',',' ', speech)
    speech=re.sub('!',' ',speech)
    speech=re.sub(':',' ',speech)
    speech=re.sub("'","",speech)
    speech=re.sub('"','',speech)
    speech=speech.lower()
    speech = word_tokenize(speech)
    return speech
def remove_stopwords(speech):
    speech_clean = [word for word in speech if word not in stopwords]
    return speech_clean
                         
df['speech_tokens']= df['speech'].apply(Text_cleansing)
df.head(5)
speaker speech speech_tokens
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t...
df['speech_clean']=df['speech_tokens'].apply(remove_stopwords)
df.head(5)
speaker speech speech_tokens speech_clean
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,... [good, evening, welcome, democratic, president...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,... [super, tuesday, week, away, biggest, primary,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th... [cbs, news, proud, bring, debate, along, co-sp...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ... [panering, tonight, twitter, ., home, paicipat...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t... [rules, next, hours, ., asked, question, minut...
def wordcloud(dataframe):
    Aw= df['speech_clean']
    wordCloud = WordCloud(width=500, height=300,background_color='white', max_font_size=110).generate(str(Aw))
    plt.imshow(wordCloud, interpolation="bilinear")
    plt.axis("off")
    plt.title("speech wordcloud")

wordcloud(df['speech_clean'])

png

Pour la suite du projet on reduira la liste des speakers aux candidats les plus notoires (top 7 speakers)###

df = df.loc[df.speaker.isin({'Joe Biden', 'Bernie Sanders', 'Elizabeth Warren', 'Michael Bloomberg', 'Pete Buttigieg', 'Amy Klobuchar',  'Tulsi Gabbard'})]
df.head()
df.shape
(2245, 4)

CountVectorizer et creation du dict des mots par candidat a utiliser sur les modeles ML qui seront en back-up###

Analyse Lexicale

cv = CountVectorizer(stop_words=stopwords)
df_cv = cv.fit_transform(df.speech)
df_words = pd.DataFrame(df_cv.toarray(), columns=cv.get_feature_names())
df_words.index = df.speaker
df_words = df_words.transpose()
df_words
speaker Bernie Sanders Michael Bloomberg Michael Bloomberg Bernie Sanders Pete Buttigieg Elizabeth Warren Elizabeth Warren Pete Buttigieg Joe Biden Bernie Sanders ... Amy Klobuchar Elizabeth Warren Amy Klobuchar Tulsi Gabbard Tulsi Gabbard Amy Klobuchar Amy Klobuchar Amy Klobuchar Elizabeth Warren Elizabeth Warren
00 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
000 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
001st 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
03 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
04 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
05 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
06 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10000 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100s 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 1 0 ... 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
149 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
xinjiang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yachts 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yale 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yanked 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
ye 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yeah 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 1 0 0
year 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yearly 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
years 2 0 0 0 0 0 0 1 0 0 ... 0 0 0 0 0 0 0 0 1 0
yellow 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemen 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemin 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yep 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yes 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yesterday 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yet 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yo 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
york 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yorker 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
young 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
younger 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youngest 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youth 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youtube 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zealand 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zero 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zeroed 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zip 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zone 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

6385 rows × 2245 columns

top_dict = {}
for c in df_words.columns:
    top = df_words[c].sort_values(ascending=False).head(30)
    top_dict[c]= list(zip(top.index, top.values))
for speaker, top_words in top_dict.items():
    print(speaker)
    print(', '.join([word for word, count in top_words[0:9]]))
    print('---')
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)


   
     in 
    
     ()
      1 top_dict = {}
      2 for c in df_words.columns:
----> 3     top = df_words[c].sort_values(ascending=False).head(30)
      4     top_dict[c]= list(zip(top.index, top.values))
      5 for speaker, top_words in top_dict.items():


TypeError: sort_values() missing 1 required positional argument: 'by'

    
   
df2=pd.DataFrame(top_dict)
df2.head(15)
from collections import Counter
words = []
for speaker in df_words.columns:
    top = [word for (word, count) in top_dict[speaker]]
    for t in top:
        words.append(t)
Counter(words).most_common(15)
---------------------------------------------------------------------------

KeyError                                  Traceback (most recent call last)


   
     in 
    
     ()
      2 words = []
      3 for speaker in df_words.columns:
----> 4     top = [word for (word, count) in top_dict[speaker]]
      5     for t in top:
      6         words.append(t)


KeyError: 'Bernie Sanders'

    
   

Implemantation du modèle###

print(df.columns)
print(df.shape)
df['speaker'] = df['speaker'].astype(str)
Index(['speaker', 'speech', 'speech_tokens', 'speech_clean'], dtype='object')
(2245, 4)

Embedding

import gensim
RANDOM_STATE = 50
EPOCHS = 5
BATCH_SIZE = 256
EMB_DIM = 100
SAVE_MODEL = True

X = df['speech_clean']
print(X.head())
X.shape
5     [well, you�re, right, economy, really, great, ...
6                                            [senator-]
8     [think, donald, trump, thinks, would, better, ...
9     [oh, mr., bloomberg, ., let, tell, mr., putin,...
11     [know, president, russia, wants, it�s, chaos, .]
Name: speech_clean, dtype: object





(2245,)
emb_model = gensim.models.Word2Vec(sentences = X, size = EMB_DIM, window = 5, workers = 4, min_count = 1)
print('La taille du vocabulaire appris est de ',len(list(emb_model.wv.vocab)))
La taille du vocabulaire appris est de  7139
from keras.preprocessing.text import Tokenizer
import tokenize
max_length = max([len(s) for s in X])

tokenizer_new = Tokenizer()
tokenizer_new.fit_on_texts(X)

X_seq = tokenizer_new.texts_to_sequences(X)
X_fin = sequence.pad_sequences(X_seq, maxlen = max_length)
print(X_fin.shape)
(2245, 140)
emb_vec = emb_model.wv
MAX_NB_WORDS = len(list(emb_vec.vocab))
tokenizer_word_index = tokenizer_new.word_index
vocab_size = len(tokenizer_new.word_index) + 1
embedded_matrix = np.zeros((vocab_size, EMB_DIM))


for word, i in tokenizer_word_index.items():
    if i>= MAX_NB_WORDS:
        continue
    try:
        embedding_vector = emb_vec[word]
        wv_matrix[i] = embedding_vector
    except:
        pass      
embedded_matrix.shape
print(embedded_matrix)
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]

Préparation des variables

from keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
y = df.speaker
print(y.head(10))
y.shape
5     1
6     4
8     4
9     1
11    5
12    2
13    2
15    5
21    3
23    1
Name: speaker, dtype: int32





(2245,)
Counter(y)
Counter({'Bernie Sanders': 430,
         'Michael Bloomberg': 97,
         'Pete Buttigieg': 392,
         'Elizabeth Warren': 440,
         'Joe Biden': 456,
         'Amy Klobuchar': 353,
         'Tulsi Gabbard': 77})
le=LabelEncoder()
df['speaker'] = le.fit_transform(df['speaker'])
df.head()

y = df.speaker
y.head()
print(y.shape)
print(X_fin.shape)
(2245,)
(2245, 140)
X_train, X_test, y_train, y_test = train_test_split(X_fin , y, test_size = 0.2, random_state = 42)


print(X_train.shape)
print(y_train.shape)
(1796, 140)
(1796,)

Construction des NN

model_pre_trained = Sequential()

model_pre_trained.add(Embedding(vocab_size, EMB_DIM, weights = [embedded_matrix], 
                    input_length = max_length, trainable = False))
model_pre_trained.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model_pre_trained.add(Dense(1, activation='softmax'))

model_pre_trained.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

model_pre_trained.summary()
Model: "sequential_11"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_11 (Embedding)     (None, 140, 100)          714000    
_________________________________________________________________
lstm_13 (LSTM)               (None, 128)               117248    
_________________________________________________________________
dense_9 (Dense)              (None, 1)                 129       
=================================================================
Total params: 831,377
Trainable params: 117,377
Non-trainable params: 714,000
_________________________________________________________________

Fitting

history_pre_trained = model_pre_trained.fit(X_fin, y, batch_size = BATCH_SIZE, epochs =20, verbose =1, validation_split = 0.2)
Train on 1796 samples, validate on 449 samples
Epoch 1/20
1796/1796 [==============================] - 4s 2ms/step - loss: 0.5429 - accuracy: 0.1754 - val_loss: -0.4417 - val_accuracy: 0.2472
Epoch 2/20
1796/1796 [==============================] - 3s 2ms/step - loss: -6.7429 - accuracy: 0.1776 - val_loss: -14.1017 - val_accuracy: 0.2472
Epoch 3/20
1796/1796 [==============================] - 3s 2ms/step - loss: -15.8550 - accuracy: 0.1776 - val_loss: -19.5441 - val_accuracy: 0.2472
Epoch 4/20
1796/1796 [==============================] - 3s 2ms/step - loss: -20.7949 - accuracy: 0.1776 - val_loss: -23.4335 - val_accuracy: 0.2472
Epoch 5/20
1796/1796 [==============================] - 3s 2ms/step - loss: -24.1430 - accuracy: 0.1776 - val_loss: -25.9735 - val_accuracy: 0.2472
Epoch 6/20
1796/1796 [==============================] - 3s 2ms/step - loss: -26.4535 - accuracy: 0.1776 - val_loss: -28.0725 - val_accuracy: 0.2472
Epoch 7/20
1796/1796 [==============================] - 3s 2ms/step - loss: -28.4266 - accuracy: 0.1776 - val_loss: -29.9313 - val_accuracy: 0.2472
Epoch 8/20
1796/1796 [==============================] - 3s 2ms/step - loss: -30.1754 - accuracy: 0.1776 - val_loss: -31.6261 - val_accuracy: 0.2472
Epoch 9/20
1796/1796 [==============================] - 3s 2ms/step - loss: -31.8791 - accuracy: 0.1776 - val_loss: -33.3337 - val_accuracy: 0.2472
Epoch 10/20
1796/1796 [==============================] - 4s 2ms/step - loss: -33.5166 - accuracy: 0.1776 - val_loss: -34.9834 - val_accuracy: 0.2472
Epoch 11/20
1796/1796 [==============================] - 3s 2ms/step - loss: -35.1544 - accuracy: 0.1776 - val_loss: -36.5973 - val_accuracy: 0.2472
Epoch 12/20
1796/1796 [==============================] - 3s 2ms/step - loss: -36.7253 - accuracy: 0.1776 - val_loss: -38.2070 - val_accuracy: 0.2472
Epoch 13/20
1796/1796 [==============================] - 3s 2ms/step - loss: -38.3344 - accuracy: 0.1776 - val_loss: -39.8655 - val_accuracy: 0.2472
Epoch 14/20
1796/1796 [==============================] - 3s 2ms/step - loss: -39.9810 - accuracy: 0.1776 - val_loss: -41.5162 - val_accuracy: 0.2472
Epoch 15/20
1796/1796 [==============================] - 3s 1ms/step - loss: -41.6567 - accuracy: 0.1776 - val_loss: -43.2049 - val_accuracy: 0.2472
Epoch 16/20
1796/1796 [==============================] - 3s 1ms/step - loss: -43.2579 - accuracy: 0.1776 - val_loss: -44.8235 - val_accuracy: 0.2472
Epoch 17/20
1796/1796 [==============================] - 3s 1ms/step - loss: -44.9030 - accuracy: 0.1776 - val_loss: -46.4982 - val_accuracy: 0.2472
Epoch 18/20
1796/1796 [==============================] - 2s 1ms/step - loss: -46.5038 - accuracy: 0.1776 - val_loss: -48.0627 - val_accuracy: 0.2472
Epoch 19/20
1796/1796 [==============================] - 3s 1ms/step - loss: -48.0124 - accuracy: 0.1776 - val_loss: -49.5424 - val_accuracy: 0.2472
Epoch 20/20
1796/1796 [==============================] - 2s 1ms/step - loss: -49.5209 - accuracy: 0.1776 - val_loss: -51.1489 - val_accuracy: 0.2472

Evaluation du modèle

score = model_pre_trained.evaluate(X_test, y_test, verbose = 0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: -51.148848297866785
Test accuracy: 0.18930958211421967

ptoblèmes: npmbre important de stopwords à rajouter au dictionnaire, doutes sur la fonction dactivation, stemming/lemmatization qui semble peu efficace; axes d'amélioration: explorer les N grammes pouir contextualiser les mots et creer u_n dictionnaire de stopwords customisé pour les deabts ( association d'idées)/


Owner
Pamela Dekas
Adepte de text mining, deep learning and data visualization
Pamela Dekas
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023