šŸ•µ Artificial Intelligence for social control of public administration

Overview

Build Status Code Climate Test Coverage Donate

Operação Serenata de Amor

  1. Non-tech crash course into Operação Serenata de Amor
  2. Tech crash course into Operação Serenata de Amor
  3. Contributing with code and tech skills
  4. Supporting
  5. Acknowledgments

Non-tech crash course into Operação Serenata de Amor

What

Serenata de Amor is an open project using artificial intelligence for social control of public administration.

Who

We are a group of people who believes in power to the people motto. We are also part of the Data Science for Civic Innovation Programme from Open Knowledge Brasil.

Among founders and long-term members, we can list a group of eight people – plus numerous contributors from the open source and open knowledge communities: Tatiana Balachova, Felipe Cabral, Eduardo Cuducos, Irio Musskopf, Bruno Pazzim, Ana Schwendler, Jessica Temporal, Yasodara Córdova and Pedro Vilanova.

How

Similar to organizations like Google, Facebook, and Netflix, we use technology to track government spendings and make open data accessible for everyone. We started looking into data from the Chamber of Deputies (Brazilian lower house) but we expanded to the Federal Senate (Brazilian upper house) and to municipalities.

When

Irio had the main ideas for the project in early 2016. For a few months, he experimented and gathered people around the project. September, 2016 marks the launching of our first crowd funding. Since then, we have been creating open source technological products and tools, as well as high quality content on civic tech on our Facebook and Medium.

Where

We have no non-virtual headquarters, but we work remotely everyday. Most of our ideas are crafted to work in any country that offers open data, but our main implementations focus in Brazil.

Why

Empowering citizens with data is important: people talk about smart cities, surveillance and privacy. We prefer to focus on smart citizens, accountability and open knowledge.

Tech crash course into Operação Serenata de Amor

What

Serenata de Amor develops open source tools to make it easy for people to use open data. The focus is to gather relevant insights and share them in an accessible interface. Through this interface, we invite citizens to dialogue with politicians, state and government about public spendings.

Who

Serenata's main role is played by Rosie: she is an artificial intelligence who analyzes Brazilian congresspeople expenses while they are in office. Rosie can find suspicious spendings and engage citizens in the discussion about these findings. She's on Twitter.

To allow people to visualize and make sense of data Rosie generates, we have created Jarbas. On this website, users can browse congresspeople expenses and get details about each of the suspicions. It is the starting point to validate a suspicion.

How

We have two main repositories on GitHub. This is the main repo and hosts Rosie and Jarbas. In addition, we have the toolbox - a pip installable package. Yet there are experimental notebooks maintained by the community and our static webpage.

When

Despite all these players acting together, the core part of the job is ran manually from time to time. The only part that is always online is Jarbas – freely serving a wide range of information about public expenditure 24/7.

Roughly once a month, we manually run Rosie and update Jarbas. A few times per year, we upload versioned datasets accessible via the toolbox – but we encourage you to use the toolbox to generate fresh datasets whenever you need.

Where

Jarbas is running in Digital Ocean droplets, and deployed using the Docker Cloud architecture.

Why

The answer to most technical why questions is because that is what we had in the past and enabled us to deliver fast. We acknowledge that this is not the best stack ever, but it has brought us here.

Contributing with code and tech skills

Make sure you have read the Tech crash course on this page. Next, check out our contributing guide.

Supporting

Acknowledgments

Open Knowledge Brasil Digital Ocean

Owner
Open Knowledge Brasil - Rede pelo Conhecimento Livre
Open Knowledge Brasil - Rede pelo Conhecimento Livre
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

āœ”ļø Linux āœ”ļø OS X āŒ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023