🕵 Artificial Intelligence for social control of public administration

Overview

Build Status Code Climate Test Coverage Donate

Operação Serenata de Amor

  1. Non-tech crash course into Operação Serenata de Amor
  2. Tech crash course into Operação Serenata de Amor
  3. Contributing with code and tech skills
  4. Supporting
  5. Acknowledgments

Non-tech crash course into Operação Serenata de Amor

What

Serenata de Amor is an open project using artificial intelligence for social control of public administration.

Who

We are a group of people who believes in power to the people motto. We are also part of the Data Science for Civic Innovation Programme from Open Knowledge Brasil.

Among founders and long-term members, we can list a group of eight people – plus numerous contributors from the open source and open knowledge communities: Tatiana Balachova, Felipe Cabral, Eduardo Cuducos, Irio Musskopf, Bruno Pazzim, Ana Schwendler, Jessica Temporal, Yasodara Córdova and Pedro Vilanova.

How

Similar to organizations like Google, Facebook, and Netflix, we use technology to track government spendings and make open data accessible for everyone. We started looking into data from the Chamber of Deputies (Brazilian lower house) but we expanded to the Federal Senate (Brazilian upper house) and to municipalities.

When

Irio had the main ideas for the project in early 2016. For a few months, he experimented and gathered people around the project. September, 2016 marks the launching of our first crowd funding. Since then, we have been creating open source technological products and tools, as well as high quality content on civic tech on our Facebook and Medium.

Where

We have no non-virtual headquarters, but we work remotely everyday. Most of our ideas are crafted to work in any country that offers open data, but our main implementations focus in Brazil.

Why

Empowering citizens with data is important: people talk about smart cities, surveillance and privacy. We prefer to focus on smart citizens, accountability and open knowledge.

Tech crash course into Operação Serenata de Amor

What

Serenata de Amor develops open source tools to make it easy for people to use open data. The focus is to gather relevant insights and share them in an accessible interface. Through this interface, we invite citizens to dialogue with politicians, state and government about public spendings.

Who

Serenata's main role is played by Rosie: she is an artificial intelligence who analyzes Brazilian congresspeople expenses while they are in office. Rosie can find suspicious spendings and engage citizens in the discussion about these findings. She's on Twitter.

To allow people to visualize and make sense of data Rosie generates, we have created Jarbas. On this website, users can browse congresspeople expenses and get details about each of the suspicions. It is the starting point to validate a suspicion.

How

We have two main repositories on GitHub. This is the main repo and hosts Rosie and Jarbas. In addition, we have the toolbox - a pip installable package. Yet there are experimental notebooks maintained by the community and our static webpage.

When

Despite all these players acting together, the core part of the job is ran manually from time to time. The only part that is always online is Jarbas – freely serving a wide range of information about public expenditure 24/7.

Roughly once a month, we manually run Rosie and update Jarbas. A few times per year, we upload versioned datasets accessible via the toolbox – but we encourage you to use the toolbox to generate fresh datasets whenever you need.

Where

Jarbas is running in Digital Ocean droplets, and deployed using the Docker Cloud architecture.

Why

The answer to most technical why questions is because that is what we had in the past and enabled us to deliver fast. We acknowledge that this is not the best stack ever, but it has brought us here.

Contributing with code and tech skills

Make sure you have read the Tech crash course on this page. Next, check out our contributing guide.

Supporting

Acknowledgments

Open Knowledge Brasil Digital Ocean

Owner
Open Knowledge Brasil - Rede pelo Conhecimento Livre
Open Knowledge Brasil - Rede pelo Conhecimento Livre
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022