Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Related tags

Deep Learningpvnet
Overview

Good news! We release a clean version of PVNet: clean-pvnet, including

  1. how to train the PVNet on the custom dataset.
  2. Use PVNet with a detector.
  3. The training and testing on the tless dataset, where we detect multiple instances in an image.

PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation

introduction

PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, Hujun Bao
CVPR 2019 oral
Project Page

Any questions or discussions are welcomed!

Truncation LINEMOD Dataset

Check TRUNCATION_LINEMOD.md for information about the Truncation LINEMOD dataset.

Installation

One way is to set up the environment with docker: How to install pvnet with docker.

Thanks Joe Dinius for providing the docker implementation.

Another way is to use the following commands.

  1. Set up python 3.6.7 environment
pip install -r requirements.txt

We need compile several files, which works fine with pytorch v0.4.1/v1.1 and gcc 5.4.0.

For users with a RTX GPU, you must use CUDA10 and pytorch v1.1 built from CUDA10.

  1. Compile the Ransac Voting Layer
ROOT=/path/to/pvnet
cd $ROOT/lib/ransac_voting_gpu_layer
python setup.py build_ext --inplace
  1. Compile some extension utils
cd $ROOT/lib/utils/extend_utils

Revise the cuda_include and dart in build_extend_utils_cffi.py to be compatible with the CUDA in your computer.

sudo apt-get install libgoogle-glog-dev=0.3.4-0.1
sudo apt-get install libsuitesparse-dev=1:4.4.6-1
sudo apt-get install libatlas-base-dev=3.10.2-9
python build_extend_utils_cffi.py

If you cannot install libsuitesparse-dev=1:4.4.6-1, please install libsuitesparse, run build_ceres.sh and move ceres/ceres-solver/build/lib/libceres.so* to lib/utils/extend_utils/lib.

Add the lib under extend_utils to the LD_LIBRARY_PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/pvnet/lib/utils/extend_utils/lib

Dataset Configuration

Prepare the dataset

Download the LINEMOD, which can be found at here.

Download the LINEMOD_ORIG, which can be found at here.

Download the OCCLUSION_LINEMOD, which can be found at here.

Create the soft link

mkdir $ROOT/data
ln -s path/to/LINEMOD $ROOT/data/LINEMOD
ln -s path/to/LINEMOD_ORIG $ROOT/data/LINEMOD_ORIG
ln -s path/to/OCCLUSION_LINEMOD $ROOT/data/OCCLUSION_LINEMOD

Compute FPS keypoints

python lib/utils/data_utils.py

Synthesize images for each object

See pvnet-rendering for information about the image synthesis.

Demo

Download the pretrained model of cat from here and put it to $ROOT/data/model/cat_demo/199.pth.

Run the demo

python tools/demo.py

If setup correctly, the output will look like

cat

Visualization of the voting procedure

We add a jupyter notebook visualization.ipynb for the keypoint detection pipeline of PVNet, aiming to make it easier for readers to understand our paper. Thanks for Kudlur, M 's suggestion.

Training and testing

Training on the LINEMOD

Before training, remember to add the lib under extend_utils to the LD_LIDBRARY_PATH

export LD_LIDBRARY_PATH=$LD_LIDBRARY_PATH:/path/to/pvnet/lib/utils/extend_utils/lib

Training

python tools/train_linemod.py --cfg_file configs/linemod_train.json --linemod_cls cat

Testing

We provide the pretrained models of each object, which can be found at here.

Download the pretrained model and move it to $ROOT/data/model/{cls}_linemod_train/199.pth. For instance

mkdir $ROOT/data/model
mv ape_199.pth $ROOT/data/model/ape_linemod_train/199.pth

Testing

python tools/train_linemod.py --cfg_file configs/linemod_train.json --linemod_cls cat --test_model

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@inproceedings{peng2019pvnet,
  title={PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation},
  author={Peng, Sida and Liu, Yuan and Huang, Qixing and Zhou, Xiaowei and Bao, Hujun},
  booktitle={CVPR},
  year={2019}
}

Acknowledgement

This work is affliated with ZJU-SenseTime Joint Lab of 3D Vision, and its intellectual property belongs to SenseTime Group Ltd.

Copyright (c) ZJU-SenseTime Joint Lab of 3D Vision. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022