Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

Related tags

Deep LearningJump
Overview

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies

project page

paper

demo video

image_0032

Prerequisites

Important Notes

We suspect there are bugs in linux gcc > 9.2 or kernel > 5.3 or our code somehow is not compatible with that. Our code has large numerical errors from unknown source given the new C++ compiler. Please use older versions of C++ compiler or test the project on Windows.

C++ Setup

This project has C++ components. There is a cmake project inside Kinematic folder. We have setup the CMake project so that it can be built on both linux and Windows. Use cmake, cmake-gui or visual studio to build the project. It requires eigen library.

Python Setup

Install the Python requirements listed in requirements.txt. The version shouldn't matter. You should be safe to install the latest versions of these packages.

Rendering Setup

To visualize training results, please set up our simulation renderer.

  • Clone and follow build instructions in UnityKinematics. This is a flexible networking utility that will send raw simulation geometry data to Unity for rendering purpose.
  • Copy [UnityKinematics build folder]/pyUnityRenderer to this root project folder.
  • Here's a sample Unity project called SimRenderer in which you can render the scenes for this project. Clone SimRenderer outside this project folder.
  • After building UnityKinematics, copy [UnityKinematics build folder]/Assets/Scripts/API to SimRenderer/Assets/Scripts. Start Unity, load SimRenderer project and it's ready to use.

Training P-VAE

We have included a pre-trained model in results/vae/models/13dim.pth. If you would like to retrain the model, run the following:

python train_pose_vae.py

This will generate the new model in results/vae/test**/test.pth. Copy the .pth file and the associated .pth.norm.npy file into results/vae/models. Change presets/default/vae/vae.yaml under the model key to use your new model.

Train Run-ups

python train.py runup

Modify presets/custom/runup.yaml to change parts of the target take-off features. Refer to Appendix A in the paper to see reference parameters.

After training, run

python once.py runup no_render results/runup***/checkpoint_2000.tar

to generate take-off state file in npy format used to train take-off controller.

Train Jumpers

Open presets/custom/jump.yaml, change env.highjump.initial_state to the path to the generated take-off state file, like results/runup***/checkpoint_2000.tar.npy. Then change env.highjump.wall_rotation to specify the wall orientation (in degrees). Refer to Appendix A in the paper to see reference parameters (note that we use radians in the paper). Run

python train.py jump

to start training.

Start the provided SimRenderer (in Unity), enter play mode, the run

python evaluate.py jump results/jump***/checkpoint_***.tar

to evaluate the visualize the motion at any time. Note that env.highjump.initial_wall_height must be set to the training height at the time of this checkpoint for correct evaluation. Training height information is available through training logs, available both in the console and through tensorboard logs. You can start tensorboard through

python -m tensorboard.main --bind_all --port xx --logdir results/jump***/
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022