TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

Related tags

Deep LearningOrthNet
Overview

OrthNet

TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials

1. Installation
2. Usage
3. Polynomials
4. Base Class(Poly)

Installation:

  1. the stable version:
    pip3 install orthnet

  2. the dev version:

git clone https://github.com/orcuslc/orthnet.git && cd orthnet
python3 setup.py build_ext --inplace && python3 setup.py install

Usage:

with TensorFlow

import tensorflow as tf
import numpy as np
from orthnet import Legendre

x_data = np.random.random((10, 2))
x = tf.placeholder(dtype = tf.float32, shape = [None, 2])
L = Legendre(x, 5)

with tf.Session() as sess:
    print(L.tensor, feed_dict = {x: x_data})

with PyTorch

import torch
import numpy as np
from orthnet import Legendre

x = torch.DoubleTensor(np.random.random((10, 2)))
L = Legendre(x, 5)
print(L.tensor)

with Numpy

import numpy as np
from orthnet import Legendre

x = np.random.random((10, 2))
L = Legendre(x, 5)
print(L.tensor)

Specify Backend

In some scenarios, users can specify the exact backend compatible with the input x. The backends provided are:

An example to specify the backend is as follows.

import numpy as np
from orthnet import Legendre, NumpyBackend

x = np.random.random((10, 2))
L = Legendre(x, 5, backend = NumpyBackend())
print(L.tensor)

Specify tensor product combinations

In some scenarios, users may provide pre-computed tensor product combinations to save computing time. An example of providing combinations is as follows.

import numpy as np
from orthnet import Legendre, enum_dim

dim = 2
degree = 5
x = np.random.random((10, dim))
L = Legendre(x, degree, combinations = enum_dim(degree, dim))
print(L.tensor)

Polynomials:

Class Polynomial
orthnet.Legendre(Poly) Legendre polynomial
orthnet.Legendre_Normalized(Poly) Normalized Legendre polynomial
orthnet.Laguerre(Poly) Laguerre polynomial
orthnet.Hermite(Poly) Hermite polynomial of the first kind (in probability theory)
orthnet.Hermite2(Poly) Hermite polynomial of the second kind (in physics)
orthnet.Chebyshev(Poly) Chebyshev polynomial of the first kind
orthnet.Chebyshev2(Poly) Chebyshev polynomial of the second kind
orthnet.Jacobi(Poly, alpha, beta) Jacobi polynomial

Base class:

Class Poly(x, degree, combination = None):

  • Inputs:
    • x a tensor
    • degree highest degree for target polynomials
    • combination optional, tensor product combinations
  • Attributes:
    • Poly.tensor the tensor of function values (with degree from 0 to Poly.degree(included))
    • Poly.length the number of function basis (columns) in Poly.tensor
    • Poly.index the index of the first combination of each degree in Poly.combinations
    • Poly.combinations all combinations of tensor product
    • Poly.tensor_of_degree(degree) return all polynomials of given degrees
    • Poly.eval(coefficients) return the function values with given coefficients
    • Poly.quadrature(function, weight) return Gauss quadrature with given function and weight
You might also like...
A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]  An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

A library to inspect itermediate layers of PyTorch models.
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

 Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Spectral Tensor Train Parameterization of Deep Learning Layers
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

Comments
  • Cuda support

    Cuda support

    Hi,

    First of all thank your for developing this project. Is it possible to create the Jacobi.tensor in the gpu? Currently I am creating the tensor in the cpu and then moving them to gpu, which is time consuming.

    Cheers

    opened by mariolinovIC 1
  • Jacobi polynomial incorrect evaluation

    Jacobi polynomial incorrect evaluation

    Hi, I have noticed than when I evaluate Jacobi polynomial with alpha=1 and beta=1 the results are not ok. Particularly I tried in range (-1,1) and I noticed the problem for n greater than 1 (i.e., 2,3,4). Thank you for your support.

    opened by mariolinovIC 0
Owner
Chuan
+1s.
Chuan
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022