An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

Overview

An Ensemble of CNN

Machine Learning project 2017

Read me

NOTE: All commands should be run inside the tensorflow environment

Dependencies

Python 3.5.1 Tensorflow 1.3 numpy 1.13

Although the model might work with previous version of above libraries, these version are what were used in development. Link to dataset: https://www.kaggle.com/xainano/handwrittenmathsymbols

Preparation

Do the following steps only if the folders MathExprJpeg/train_data and MathExprJpeg/train_data and files x_data.npy, y_data.npy and labels.npy are none existent, otherwise go directly to Running Main section.

In order to run the model the training and testing folders must be created. If test_data folder and train_data folder does not exist in the MathExprJpeg folder, these must be created. Create them by running the script create_train_test_data.py like this:

python create_train_test_data.py

Then the datafiles for the training data must be created in order to speed up training. Called x_data.npy, y_data.npy and labels.npy. If non existent create by running the script create_datafiles.py like this:

python create_datafiles.py
Running main

After the preparation steps are done, set the preferred modes in cnn_math_main.py file. This is done by changing the parameters at the top of the file:

# set if data shold be read in advance
fileread = True
ensemble_mode = False 

fileread = True means that the data will be read from the previously created x_data.npy and y_data.npy files. Setting this to True is highly recommended. The ensemble_mode = False means that the model will not be run in ensemble mode. This is recommended as the ensemble mode is performance heavy and can not be guaranteed to work in the latest releases.

It is recommended to change the name of the logging file for each run:

writer = tf.summary.FileWriter('./logs/cnn_math_logs_true_2ep_r1')
writer.add_graph(sess.graph)

Also set the preferred value to the epoch and batch_size:

training_epochs = 40
batch_size = 20

When all of the above has been done, the model can be run with the command:

python cnn_math_main.py

The model has been known to sometimes get errors while reading files. The source of which is unknown. If such an error is to occur, run the following commands:

rm -r MatchExprJpeg/train_data
rm -r MatchExprJpeg/test_data
rm x_data.npy
rm y_data.npy
rm labels.npy

python create_train_test_data.py
python create_datafiles.py

And then try to run the cnn_math_main.py again. start tensorboard with:

tensorboard --logdir=./logs

to see the graphs for the scalars, the image being processed etc.

The model is implemented in the cnn_model.py class. If this file is tempered with it is possible that the model breaks.

Happy predicting

MachineLearningProjectCNN

Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022