Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Overview


Automatic, Readable, Reusable, Extendable

Machin is a reinforcement library designed for pytorch.


Build status

Platform Status
Linux Jenkins build
Windows Windows build

Supported Models


Anything, including recurrent networks.

Supported algorithms


Currently Machin has implemented the following algorithms, the list is still growing:

Single agent algorithms:

Multi-agent algorithms:

Immitation learning algorithms (Behavioral Cloning, Inverse RL, GAIL)

Massively parallel algorithms:

Enhancements:

Algorithms to be supported:

Features


1. Automatic

Starting from version 0.4.0, Machin now supports automatic config generation, you can get a configuration through:

python -m machin.auto generate --algo DQN --env openai_gym --output config.json

And automatically launch the experiment with pytorch lightning:

python -m machin.auto launch --config config.json

2. Readable

Compared to other reinforcement learning libraries such as the famous rlpyt, ray, and baselines. Machin tries to just provide a simple, clear implementation of RL algorithms.

All algorithms in Machin are designed with minimial abstractions and have very detailed documents, as well as various helpful tutorials.

3. Reusable

Machin takes a similar approach to that of pytorch, encasulating algorithms, data structures in their own classes. Users do not need to setup a series of data collectors, trainers, runners, samplers... to use them, just import.

The only restriction placed on your models is their input / output format, however, these restrictions are minimal, making it easy to adapt algorithms to your custom environments.

4. Extendable

Machin is built upon pytorch, it and thanks to its powerful rpc api, we may construct complex distributed programs. Machin provides implementations for enhanced parallel execution pools, automatic model assignment, role based rpc scaling, rpc service discovery and registration, etc.

Upon these core functions, Machin is able to provide tested high-performance distributed training algorithm implementations, such as A3C, APEX, IMPALA, to ease your design.

5. Reproducible

Machin is weakly reproducible, for each release, our test framework will directly train every RL framework, if any framework cannot reach the target score, the test will fail directly.

However, currently, the tests are not guaranteed to be exactly the same as the tests in original papers, due to the large variety of different environments used in original research papers.

Documentation


See here. Examples are located in examples.

Installation


Machin is hosted on PyPI. Python >= 3.6 and PyTorch >= 1.6.0 is required. You may install the Machin library by simply typing:

pip install machin

You are suggested to create a virtual environment first if you are using conda to manage your environments, to prevent PIP changes your packages without letting conda know.

conda create -n some_env pip
conda activate some_env
pip install machin

Note: Currently only a fraction of all functions is supported on platforms other than linux (mainly distributed algorithms), to test whether the code is running correctly, you can run the corresponding test script for your platform in the root directory:

run_win_test.bat
run_linux_test.sh
run_macos_test.sh

Some errors may occur due to incorrect setup of libraries, make sure you have installed graphviz etc.

Contributing


Any contribution would be great, don't hesitate to submit a PR request to us! Please follow the instructions in this file.

Issues


If you have any issues, please use the template markdown files in .github/ISSUE_TEMPLATE folder and format your issue before opening a new one. We would try our best to respond to your feature requests and problems.

Citing


We would be very grateful if you can cite our work in your publications:

@misc{machin,
  author = {Muhan Li},
  title = {Machin},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/iffiX/machin}},
}

Roadmap


Please see Roadmap for the exciting new features we are currently working on!

Owner
Iffi
CS student, interested in AI. Currently studying at Northwestern University.
Iffi
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022