Image Matching Evaluation

Related tags

Deep LearningIME
Overview

Image Matching Evaluation (IME)

IME provides to test any feature matching algorithm on datasets containing ground-truth homographies.

Also, one can reproduce the results given in our paper Effect of Parameter Optimization on Classical and Learning-based Image Matching Methods published in ICCV 2021 TradiCV Workshop.

Currently Supported Algorithms

Classical Learning-Based
SIFT SuperPoint
SURF SuperGlue
ORB Patch2Pix
KAZE DFM
AKAZE

Environment Setup

This repository is created using Anaconda.

Open a terminal in the IME folder and run the following commands;

  1. Run bash script to create environment for IME, download algorithms and datasets
bash install.sh
  1. Activate the environment
conda activate ime
  1. Run IME!
python3 main.ipy

Well done, you can find results on Results folder :)

Notes:

  1. For DFM algorithm you can arrange ratio test threshold using DFM/python/algorithm_wrapper_util.py by changing ratio_th (default = [0.9, 0.9, 0.9, 0.9, 0.95, 1.0]).

    For all classical algorithms you can arrange ratio test threshold by changing the ratio parameter of mnn_ratio_matcher function in algorithm_wrapper_util.py for each algortihm.

    For SuperPoint again you should change ratio parameter of mnn_ratio_matcher function in algorithm_wrapper.py

    For Patch2Pix you should change io_thres parameter in algorithm_wrapper_util.py

  2. Use get_names.py to select algorithms and datasets.

  3. You can put your own algorithm on Algorithm folder to evaluate with creating a wrapper with the same format. This wrapper should output the matched pixel positions between two images using the selected algorithm.

  4. You can put your own dataset on Dataset folder to evaluate by arranging the proper format. Dataset should be in the form of Dataset/subset/subsubset/

Reproducing Results Given in our Paper

We provide the results given in our paper in ICCV_Results folder. To reproduce the results, you can run an experiment for a specific ratio test or confidence threshold and copy the results in the relevant ratio threshold folder in hpatches_classical or hpatches_deep folder. Then, you can run rt_fig.py and auc_fig.py scripts to save and view the figures.

TODO

Algorithms to be added:

Datasets to be added:

BibTeX Citation

Please cite our paper if you use the code:

@InProceedings{Efe_2021_ICCV,
    author    = {Efe, Ufuk and Ince, Kutalmis Gokalp and Alatan, Aydin},
    title     = {Effect of Parameter Optimization on Classical and Learning-based Image Matching Methods},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
    month     = {October},
    year      = {2021},
}
Owner
PhD student @ METU
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022