AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Overview

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page]

This repository is the official implementation of AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition.

Rameswar Panda*, Chun-Fu (Richard) Chen*, Quanfu Fan, Ximeng Sun, Kate Saenko, Aude Oliva, Rogerio Feris, "AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition", ICCV 2021. (*: Equal Contribution)

If you use the codes and models from this repo, please cite our work. Thanks!

@inproceedings{panda2021adamml,
    title={{AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition}},
    author={Panda, Rameswar and Chen, Chun-Fu and Fan, Quanfu and Sun, Ximeng and Saenko, Kate and Oliva, Aude and Feris, Rogerio},
    booktitle={International Conference on Computer Vision (ICCV)},
    year={2021}
}

Requirements

pip3 install torch torchvision librosa tqdm Pillow numpy 

Data Preparation

The dataloader (utils/video_dataset.py) can load RGB frames stored in the following format:

-- dataset_dir
---- train.txt
---- val.txt
---- test.txt
---- videos
------ video_0_folder
-------- 00001.jpg
-------- 00002.jpg
-------- ...
------ video_1_folder
------ ...

Each line in train.txt and val.txt includes 4 elements and separated by a symbol, e.g. space ( ) or semicolon (;). Four elements (in order) include (1) relative paths to video_x_folder from dataset_dir, (2) starting frame number, usually 1, (3) ending frame number, (4) label id (a numeric number).

E.g., a video_x has 300 frames and belong to label 1.

path/to/video_x_folder 1 300 1

The difference for test.txt is that each line will only have 3 elements (no label information).

The same format is used for optical flow but each file (00001.jpg) need to be x_00001.jpg and y_00001.jpg.

On the other hand, for audio data, you need to change the first elements to the path of corresponding wav files, like

path/to/audio_x.wav 1 300 1

After that, you need to update the utils/data_config.py for the datasets accordingly.

We provide the scripts in the tools folder to extract RGB frames and audios from a video. To extract the optical flow, we use the docker image provided by TSN. Please see the help in the script.

Pretrained models

We provide the pretrained models on the Kinetics-Sounds dataset, including the unimodality models and our AdaMML models. You can find all the models here.

Training

After downloding the unimodality pretrained models, here is the command template to train AdaMML:

python3 train.py --multiprocessing-distributed --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 --epochs 20 --warmup_epochs 5 --finetune_epochs 10 \
--modality MODALITY1 MODALITY2 --datadir /PATH/TO/MODALITY1 /PATH/TO/MODALITY2 --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --unimodality_pretrained /PATH/TO/MODEL_MODALITY1 /PATH/TO/MODEL_MODALITY2 \
--learnable_lf_weights --num_segments 5 --cost_weights 1.0 0.005 --causality_modeling lstm --gammas 10.0 --sync-bn \
--lr 0.001 --p_lr 0.01 --lr_scheduler multisteps --lr_steps 10 15

The length of the following arguments depended on how many modalities you would like to include in AdaMML.

  • --modality: the modalities, other augments needs to follow this order
  • --datadir: the data dir for each modality
  • --unimodality_pretrained: the pretrained unimodality model

Note that, to use rgbdiff as a proxy, both rgbdiff and flow needs to be specified in --modality and their corresponding --datadir. However, you only need to provided flow pretrained model in the --unimodality_pretrained

Here are the examples to train AdaMML with different combinations.

RGB + Audio

python3 train.py --multiprocessing-distributed --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 --epochs 20 --warmup_epochs 5 --finetune_epochs 10 \
--modality rgb sound --datadir /PATH/TO/RGB_DATA /PATH/TO/AUDIO_DATA --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --unimodality_pretrained /PATH/TO/RGB_MODEL /PATH/TO/AUDIO_MODEL \
--learnable_lf_weights --num_segments 5 --cost_weights 1.0 0.05 --causality_modeling lstm --gammas 10.0 --sync-bn \
--lr 0.001 --p_lr 0.01 --lr_scheduler multisteps --lr_steps 10 15

RGB + Flow (with RGBDiff as Proxy)

python3 train.py --multiprocessing-distributed --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 --epochs 20 --warmup_epochs 5 --finetune_epochs 10 \
--modality rgb flow rgbdiff --datadir /PATH/TO/RGB_DATA /PATH/TO/FLOW_DATA /PATH/TO/RGB_DATA --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --unimodality_pretrained /PATH/TO/RGB_MODEL /PATH/TO/FLOW_MODEL \
--learnable_lf_weights --num_segments 5 --cost_weights 1.0 1.0 --causality_modeling lstm --gammas 10.0 --sync-bn \
--lr 0.001 --p_lr 0.01 --lr_scheduler multisteps --lr_steps 10 15

RGB + Audio + Flow (with RGBDiff as Proxy)

python3 train.py --multiprocessing-distributed --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 --epochs 20 --warmup_epochs 5 --finetune_epochs 10 \
--modality rgb sound flow rgbdiff --datadir /PATH/TO/RGB_DATA /PATH/TO/AUDIO_DATA /PATH/TO/FLOW_DATA /PATH/TO/RGB_DATA --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --unimodality_pretrained /PATH/TO/RGB_MODEL /PATH/TO/SOUND_MODEL /PATH/TO/FLOW_MODEL \
--learnable_lf_weights --num_segments 5 --cost_weights 0.5 0.05 0.8 --causality_modeling lstm --gammas 10.0 --sync-bn \
--lr 0.001 --p_lr 0.01 --lr_scheduler multisteps --lr_steps 10 15

Evaluation

Testing an AdaMML model is very straight-forward, you can simply use the training command with following modifications:

  • add -e in the command
  • use --pretrained /PATH/TO/MODEL to load the trained model
  • remove --multiprocessing-distributed and --unimodality_pretrained
  • set --val_num_clips if you would like to test under different number of video segments (default is 10)

Here is command template:

python3 train.py -e --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 \
--modality MODALITY1 MODALITY2 --datadir /PATH/TO/MODALITY1 /PATH/TO/MODALITY2 --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --pretrained /PATH/TO/ADAMML_MODEL \
--learnable_lf_weights --num_segments 5 --causality_modeling lstm --sync-bn
You might also like...
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

A Multi-modal Model Chinese Spell Checker Released on ACL2021.
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

[LREC] MMChat: Multi-Modal Chat Dataset on Social Media
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Comments
  • The training details about unimodal pretrained model

    The training details about unimodal pretrained model

    Hi, the whole Adamml model needs the unimodal pretrained models. However, there is no details about this in this project or your paper. Could you please share these details about training the unimodal models. Thanks a lot.

    opened by weizequan 1
Owner
International Business Machines
International Business Machines
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022