GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

Related tags

Deep LearningGeoMol
Overview

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles


This repository contains a method to generate 3D conformer ensembles directly from the molecular graph as described in our paper.

Requirements

  • python (version>=3.7.9)
  • pytorch (version>=1.7.0)
  • rdkit (version>=2020.03.2)
  • pytorch-geometric (version>=1.6.3)
  • networkx (version>=2.5.1)
  • pot (version>=0.7.0)

Installation

Data

Download and extract the GEOM dataset from the original source:

  1. wget https://dataverse.harvard.edu/api/access/datafile/4327252
  2. tar -xvf 4327252

Environment

Run make conda_env to create the conda environment. The script will request you to enter one of the supported CUDA versions listed here. The script uses this CUDA version to install PyTorch and PyTorch Geometric. Alternatively, you could manually follow the steps to install PyTorch Geometric here.

Usage

This should result in two different directories, one for each half of GEOM. You should place the qm9 conformers directory in the data/QM9/ directory and do the same for the drugs directory. This is all you need to train the model:

python train.py --data_dir data/QM9/qm9/ --split_path data/QM9/splits/split0.npy --log_dir ./test_run --n_epochs 250 --dataset qm9

Use the provided script to generate conformers. The test_csv arg should be a csv file with SMILES in the first column, and the number of conformers you want to generate in the second column. This will output a compressed dictionary of rdkit mols in the trained_model_dir directory (unless you provide the out arg):

python generate_confs.py --trained_model_dir trained_models/qm9/ --test_csv data/QM9/test_smiles.csv --dataset qm9

You can use the provided visualize_confs.ipynb jupyter notebook to visualize the generated conformers.

Additional comments

Training

To train the model, our code randomly samples files from the GEOM dataset and randomly samples conformers within those files. This is a lot of file I/O, which wasn't a huge issue for us when training, but could be an issue for others. If you're having issues with this, feel free to reach out, and I can help you reconfigure the code.

Some limitations

Currently, the model is hardcoded for atoms with a max of 4 neighbors. Since the dataset we train on didn't have atoms with more than 4 neighbors, we made this choice to speed up the code. In principle, the code can be adapted for something like a pentavalent phosphorus, but this wasn't a priority for us.

We can't deal with disconnected fragments (i.e. there is a "." in the SMILES).

This code will work poorly for macrocycles.

To ensure correct predictions, ALL tetrahedral chiral centers must be specified. There's probably a way to automate the specification of "rigid" chiral centers (e.g. in a fused ring), which I'll hopefully figure out soon, but I'm grad student with limited time :(

Feedback and collaboration

Code like this doesn't improve without feedback from the community. If you have comments/suggestions, please reach out to us! We're always happy to chat and provide input on how you can take this method to the next level.

A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022