The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Related tags

Deep LearningPIRender
Overview

Website | ArXiv | Get Start | Video

PIRenderer

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering" (ICCV2021)

The proposed PIRenderer can synthesis portrait images by intuitively controlling the face motions with fully disentangled 3DMM parameters. This model can be applied to tasks such as:

  • Intuitive Portrait Image Editing

    Intuitive Portrait Image Control

    Pose & Expression Alignment

  • Motion Imitation

    Same & Corss-identity Reenactment

  • Audio-Driven Facial Reenactment

    Audio-Driven Reenactment

News

  • 2021.9.20 Code for PyTorch is available!

Colab Demo

Coming soon

Get Start

1). Installation

Requirements

  • Python 3
  • PyTorch 1.7.1
  • CUDA 10.2

Conda Installation

# 1. Create a conda virtual environment.
conda create -n PIRenderer python=3.6
conda activate PIRenderer
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. Install other dependencies
pip install -r requirements.txt

2). Dataset

We train our model using the VoxCeleb. You can download the demo dataset for inference or prepare the dataset for training and testing.

Download the demo dataset

The demo dataset contains all 514 test videos. You can download the dataset with the following code:

./scripts/download_demo_dataset.sh

Or you can choose to download the resources with these links:

Google Driven & BaiDu Driven with extraction passwords ”p9ab“

Then unzip and save the files to ./dataset

Prepare the dataset

  1. The dataset is preprocessed follow the method used in First-Order. You can follow the instructions in their repo to download and crop videos for training and testing.

  2. After obtaining the VoxCeleb videos, we extract 3DMM parameters using Deep3DFaceReconstruction.

    The folder are with format as:

    ${DATASET_ROOT_FOLDER}
    └───path_to_videos
    		└───train
    				└───xxx.mp4
    				└───xxx.mp4
    				...
    		└───test
    				└───xxx.mp4
    				└───xxx.mp4
    				...
    └───path_to_3dmm_coeff
    		└───train
    				└───xxx.mat
    				└───xxx.mat
    				...
    		└───test
    				└───xxx.mat
    				└───xxx.mat
    				...
    
  3. We save the video and 3DMM parameters in a lmdb file. Please run the following code to do this

    python scripts/prepare_vox_lmdb.py \
    --path path_to_videos \
    --coeff_3dmm_path path_to_3dmm_coeff \
    --out path_to_output_dir

3). Training and Inference

Inference

The trained weights can be downloaded by running the following code:

./scripts/download_weights.sh

Or you can choose to download the resources with these links: coming soon. Then save the files to ./result/face

Reenactment

Run the the demo for face reenactment:

python -m torch.distributed.launch --nproc_per_node=1 --master_port 12345 inference.py \
--config ./config/face.yaml \
--name face \
--no_resume \
--output_dir ./vox_result/face_reenactment

The output results are saved at ./vox_result/face_reenactment

Intuitive Control

coming soon

Train

Our model can be trained with the following code

python -m torch.distributed.launch --nproc_per_node=4 --master_port 12345 train.py \
--config ./config/face.yaml \
--name face

Citation

If you find this code is helpful, please cite our paper

@misc{ren2021pirenderer,
      title={PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering}, 
      author={Yurui Ren and Ge Li and Yuanqi Chen and Thomas H. Li and Shan Liu},
      year={2021},
      eprint={2109.08379},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

We build our project base on imaginaire. Some dataset preprocessing methods are derived from video-preprocessing.

Owner
Ren Yurui
Ren Yurui
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022