Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Overview

Flickr-Faces-HQ Dataset (FFHQ)

Python 3.6 License CC Format PNG Resolution 1024×1024 Images 70000

Teaser image

Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN):

A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
https://arxiv.org/abs/1812.04948

The dataset consists of 70,000 high-quality PNG images at 1024×1024 resolution and contains considerable variation in terms of age, ethnicity and image background. It also has good coverage of accessories such as eyeglasses, sunglasses, hats, etc. The images were crawled from Flickr, thus inheriting all the biases of that website, and automatically aligned and cropped using dlib. Only images under permissive licenses were collected. Various automatic filters were used to prune the set, and finally Amazon Mechanical Turk was used to remove the occasional statues, paintings, or photos of photos.

For business inquiries, please contact [email protected]

For press and other inquiries, please contact Hector Marinez at [email protected]

Licenses

The individual images were published in Flickr by their respective authors under either Creative Commons BY 2.0, Creative Commons BY-NC 2.0, Public Domain Mark 1.0, Public Domain CC0 1.0, or U.S. Government Works license. All of these licenses allow free use, redistribution, and adaptation for non-commercial purposes. However, some of them require giving appropriate credit to the original author, as well as indicating any changes that were made to the images. The license and original author of each image are indicated in the metadata.

The dataset itself (including JSON metadata, download script, and documentation) is made available under Creative Commons BY-NC-SA 4.0 license by NVIDIA Corporation. You can use, redistribute, and adapt it for non-commercial purposes, as long as you (a) give appropriate credit by citing our paper, (b) indicate any changes that you've made, and (c) distribute any derivative works under the same license.

Overview

All data is hosted on Google Drive:

Path Size Files Format Description
ffhq-dataset 2.56 TB 210,014 Main folder
├  ffhq-dataset-v2.json 255 MB 1 JSON Metadata including copyright info, URLs, etc.
├  images1024x1024 89.1 GB 70,000 PNG Aligned and cropped images at 1024×1024
├  thumbnails128x128 1.95 GB 70,000 PNG Thumbnails at 128×128
├  in-the-wild-images 955 GB 70,000 PNG Original images from Flickr
├  tfrecords 273 GB 9 tfrecords Multi-resolution data for StyleGAN and StyleGAN2
└  zips 1.28 TB 4 ZIP Contents of each folder as a ZIP archive.

High-level statistics:

Pie charts

For use cases that require separate training and validation sets, we have appointed the first 60,000 images to be used for training and the remaining 10,000 for validation. In the StyleGAN paper, however, we used all 70,000 images for training.

We have explicitly made sure that there are no duplicate images in the dataset itself. However, please note that the in-the-wild folder may contain multiple copies of the same image in cases where we extracted several different faces from the same image.

Download script

You can either grab the data directly from Google Drive or use the provided download script. The script makes things considerably easier by automatically downloading all the requested files, verifying their checksums, retrying each file several times on error, and employing multiple concurrent connections to maximize bandwidth.

> python download_ffhq.py -h
usage: download_ffhq.py [-h] [-j] [-s] [-i] [-t] [-w] [-r] [-a]
                        [--num_threads NUM] [--status_delay SEC]
                        [--timing_window LEN] [--chunk_size KB]
                        [--num_attempts NUM]

Download Flickr-Face-HQ (FFHQ) dataset to current working directory.

optional arguments:
  -h, --help            show this help message and exit
  -j, --json            download metadata as JSON (254 MB)
  -s, --stats           print statistics about the dataset
  -i, --images          download 1024x1024 images as PNG (89.1 GB)
  -t, --thumbs          download 128x128 thumbnails as PNG (1.95 GB)
  -w, --wilds           download in-the-wild images as PNG (955 GB)
  -r, --tfrecords       download multi-resolution TFRecords (273 GB)
  -a, --align           recreate 1024x1024 images from in-the-wild images
  --num_threads NUM     number of concurrent download threads (default: 32)
  --status_delay SEC    time between download status prints (default: 0.2)
  --timing_window LEN   samples for estimating download eta (default: 50)
  --chunk_size KB       chunk size for each download thread (default: 128)
  --num_attempts NUM    number of download attempts per file (default: 10)
  --random-shift SHIFT  standard deviation of random crop rectangle jitter
  --retry-crops         retry random shift if crop rectangle falls outside image (up to 1000
                        times)
  --no-rotation         keep the original orientation of images
  --no-padding          do not apply blur-padding outside and near the image borders
  --source-dir DIR      where to find already downloaded FFHQ source data
> python ..\download_ffhq.py --json --images
Downloading JSON metadata...
\ 100.00% done  2/2 files  0.25/0.25 GB   43.21 MB/s  ETA: done
Parsing JSON metadata...
Downloading 70000 files...
| 100.00% done  70001/70001 files  89.19 GB/89.19 GB  59.87 MB/s  ETA: done

The script also serves as a reference implementation of the automated scheme that we used to align and crop the images. Once you have downloaded the in-the-wild images with python download_ffhq.py --wilds, you can run python download_ffhq.py --align to reproduce exact replicas of the aligned 1024×1024 images using the facial landmark locations included in the metadata.

Reproducing the unaligned FFHQ

To reproduce the "unaligned FFHQ" dataset as used in the Alias-Free Generative Adversarial Networks paper, use the following options:

python download_ffhq.py \
    --source-dir 
   
     \
    --align --no-rotation --random-shift 0.2 --no-padding --retry-crops

   

Metadata

The ffhq-dataset-v2.json file contains the following information for each image in a machine-readable format:

{
  "0": {                                                 # Image index
    "category": "training",                              # Training or validation
    "metadata": {                                        # Info about the original Flickr photo:
      "photo_url": "https://www.flickr.com/photos/...",  # - Flickr URL
      "photo_title": "DSCF0899.JPG",                     # - File name
      "author": "Jeremy Frumkin",                        # - Author
      "country": "",                                     # - Country where the photo was taken
      "license": "Attribution-NonCommercial License",    # - License name
      "license_url": "https://creativecommons.org/...",  # - License detail URL
      "date_uploaded": "2007-08-16",                     # - Date when the photo was uploaded to Flickr
      "date_crawled": "2018-10-10"                       # - Date when the photo was crawled from Flickr
    },
    "image": {                                           # Info about the aligned 1024x1024 image:
      "file_url": "https://drive.google.com/...",        # - Google Drive URL
      "file_path": "images1024x1024/00000/00000.png",    # - Google Drive path
      "file_size": 1488194,                              # - Size of the PNG file in bytes
      "file_md5": "ddeaeea6ce59569643715759d537fd1b",    # - MD5 checksum of the PNG file
      "pixel_size": [1024, 1024],                        # - Image dimensions
      "pixel_md5": "47238b44dfb87644460cbdcc4607e289",   # - MD5 checksum of the raw pixel data
      "face_landmarks": [...]                            # - 68 face landmarks reported by dlib
    },
    "thumbnail": {                                       # Info about the 128x128 thumbnail:
      "file_url": "https://drive.google.com/...",        # - Google Drive URL
      "file_path": "thumbnails128x128/00000/00000.png",  # - Google Drive path
      "file_size": 29050,                                # - Size of the PNG file in bytes
      "file_md5": "bd3e40b2ba20f76b55dc282907b89cd1",    # - MD5 checksum of the PNG file
      "pixel_size": [128, 128],                          # - Image dimensions
      "pixel_md5": "38d7e93eb9a796d0e65f8c64de8ba161"    # - MD5 checksum of the raw pixel data
    },
    "in_the_wild": {                                     # Info about the in-the-wild image:
      "file_url": "https://drive.google.com/...",        # - Google Drive URL
      "file_path": "in-the-wild-images/00000/00000.png", # - Google Drive path
      "file_size": 3991569,                              # - Size of the PNG file in bytes
      "file_md5": "1dc0287e73e485efb0516a80ce9d42b4",    # - MD5 checksum of the PNG file
      "pixel_size": [2016, 1512],                        # - Image dimensions
      "pixel_md5": "86b3470c42e33235d76b979161fb2327",   # - MD5 checksum of the raw pixel data
      "face_rect": [667, 410, 1438, 1181],               # - Axis-aligned rectangle of the face region
      "face_landmarks": [...],                           # - 68 face landmarks reported by dlib
      "face_quad": [...]                                 # - Aligned quad of the face region
    }
  },
  ...
}

Acknowledgements

We thank Jaakko Lehtinen, David Luebke, and Tuomas Kynkäänniemi for in-depth discussions and helpful comments; Janne Hellsten, Tero Kuosmanen, and Pekka Jänis for compute infrastructure and help with the code release.

We also thank Vahid Kazemi and Josephine Sullivan for their work on automatic face detection and alignment that enabled us to collect the data in the first place:

One Millisecond Face Alignment with an Ensemble of Regression Trees
Vahid Kazemi, Josephine Sullivan
Proc. CVPR 2014
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Kazemi_One_Millisecond_Face_2014_CVPR_paper.pdf

Privacy

When collecting the data, we were careful to only include photos that – to the best of our knowledge – were intended for free use and redistribution by their respective authors. That said, we are committed to protecting the privacy of individuals who do not wish their photos to be included.

To find out whether your photo is included in the Flickr-Faces-HQ dataset, please click this link to search the dataset with your Flickr username.

To get your photo removed from the Flickr-Faces-HQ dataset:

  1. Go to Flickr and do one of the following:
    • Tag the photo with no_cv to indicate that you do not wish it to be used for computer vision research.
    • Change the license of the photo to None (All rights reserved) or any Creative Commons license with NoDerivs to indicate that you do not want it to be redistributed.
    • Make the photo private, i.e., only visible to you and your friends/family.
    • Get the photo removed from Flickr altogether.
  2. Contact [email protected]. Please include your Flickr username in the email.
  3. We will check the status of all photos from the particular user and update the dataset accordingly.
Owner
NVIDIA Research Projects
NVIDIA Research Projects
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022