Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Overview

Face2webtoon

merge_from_ofoct (2)

merge_from_ofoct (1)

Introduction

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

Webtoon Dataset

data

I used anime face detector. Since face detector is not that good at detecting the faces from webtoon, I could gather only 1400 webtoon face images.

Baseline 0(U-GAT-IT)

I used U-GAT-IT official pytorch implementation. U-GAT-IT is GAN for unpaired image to image translation. By using CAM attention module and adaptive layer instance normalization, it performed well on image translation where considerable shape deformation is required, on various hyperparameter settings. Since shape is very different between two domain, I used this model.

For face data, i used AFAD-Lite dataset from https://github.com/afad-dataset/tarball-lite.

good

gif1

Some results look pretty nice, but many result have lost attributes while transfering.

Missing of Attributes

Gender

gender

Gender information was lost.

Glasses

glasses

A model failed to generate glasses in the webtoon faces.

Result Analysis

To analysis the result, I seperated webtoon dataset to 5 different groups.

group number group name number of data
0 woman_no_glasses 1050
1 man_no_glasses 249
2 man_glasses 17->49
3 woman_glasses 15->38

Even after I collected more data for group 2 and 3, there are severe imbalances between groups. As a result, model failed to translate to few shot groups, for example, group 2 and 3.

U-GAT-IT + Few Shot Transfer

Few shot transfer : https://arxiv.org/abs/2007.13332

Paper review : https://yun905.tistory.com/48

In this paper, authors successfully transfered the knowledge from group with enough data to few shot groups which have only 10~15 data. First, they trained basic model, and made branches for few shot groups.

Basic model

For basic model, I trained U-GAT-IT between only group 0.

basic_model1 basic_model2

Baseline 1 (simple fine-tuning)

For baseline 1, I freeze the bottleneck layers of generator and tried to fine-tune the basic model. I used 38 images(both real/fake) of group 1,2,3, and added 8 images of group 0 to prevent forgetting. I trained for 200k iterations.

1

Model randomly mapped between groups.

Baseline 2 (group classification loss + selective backprop)

0

I attached additional group classifier to discriminator and added group classification loss according to original paper. Images of group 0,1,2,3 were feeded sequentially, and bottleneck layers of generator were updated for group 0 only.

With limited data, bias of FID score is too big. Instead, I used KID

KID*1000
25.95

U-GAT-IT + group classification loss + adaptive discriminator augmentation

ADA is very useful data augmentation method for training GAN with limited data. Although original paper only handles unconditional GANs, I applied ADA to U-GAT-IT which is conditional GAN. Augmentation was applied to both discriminators, because it is expected that preventing the discriminator of the face domain from overfitting would improve the performance of the face generator and therefore the cycle consistency loss would be more meaningful. Only pixel blitting and geometric transformation have been implemented, as the effects of other augmentation methods are minimal according to paper. The rest will be implemented later.

To achieve better result, I changed face dataset to more diverse one(CelebA).

merge_from_ofoct (2)

merge_from_ofoct (1)

image

ADA makes training longer. It took 8 days with single 2070 SUPER, but did not converged completely.

KID*1000
12.14

Start training

python main.py --dataset dataset_name --useADA True --group 0,1,2,3 --use_grouploss True --neptune False

If --neptune is True, the experiment is transmitted to neptune ai, which is experiment management tool. You must set your API token. --group 0,1,3 make group 2 out of training.

Owner
이상윤
이상윤
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
yufan 81 Dec 08, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022