A framework for Quantification written in Python

Related tags

Deep LearningQuaPy
Overview

QuaPy

QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python.

QuaPy is based on the concept of "data sample", and provides implementations of the most important aspects of the quantification workflow, such as (baseline and advanced) quantification methods, quantification-oriented model selection mechanisms, evaluation measures, and evaluations protocols used for evaluating quantification methods. QuaPy also makes available commonly used datasets, and offers visualization tools for facilitating the analysis and interpretation of the experimental results.

Installation

pip install quapy

A quick example:

The following script fetches a dataset of tweets, trains, applies, and evaluates a quantifier based on the Adjusted Classify & Count quantification method, using, as the evaluation measure, the Mean Absolute Error (MAE) between the predicted and the true class prevalence values of the test set.

import quapy as qp
from sklearn.linear_model import LogisticRegression

dataset = qp.datasets.fetch_twitter('semeval16')

# create an "Adjusted Classify & Count" quantifier
model = qp.method.aggregative.ACC(LogisticRegression())
model.fit(dataset.training)

estim_prevalence = model.quantify(dataset.test.instances)
true_prevalence  = dataset.test.prevalence()

error = qp.error.mae(true_prevalence, estim_prevalence)

print(f'Mean Absolute Error (MAE)={error:.3f}')

Quantification is useful in scenarios characterized by prior probability shift. In other words, we would be little interested in estimating the class prevalence values of the test set if we could assume the IID assumption to hold, as this prevalence would be roughly equivalent to the class prevalence of the training set. For this reason, any quantification model should be tested across many samples, even ones characterized by class prevalence values different or very different from those found in the training set. QuaPy implements sampling procedures and evaluation protocols that automate this workflow. See the Wiki for detailed examples.

Features

  • Implementation of many popular quantification methods (Classify-&-Count and its variants, Expectation Maximization, quantification methods based on structured output learning, HDy, QuaNet, and quantification ensembles).
  • Versatile functionality for performing evaluation based on artificial sampling protocols.
  • Implementation of most commonly used evaluation metrics (e.g., AE, RAE, SE, KLD, NKLD, etc.).
  • Datasets frequently used in quantification (textual and numeric), including:
    • 32 UCI Machine Learning datasets.
    • 11 Twitter quantification-by-sentiment datasets.
    • 3 product reviews quantification-by-sentiment datasets.
  • Native support for binary and single-label multiclass quantification scenarios.
  • Model selection functionality that minimizes quantification-oriented loss functions.
  • Visualization tools for analysing the experimental results.

Requirements

  • scikit-learn, numpy, scipy
  • pytorch (for QuaNet)
  • svmperf patched for quantification (see below)
  • joblib
  • tqdm
  • pandas, xlrd
  • matplotlib

SVM-perf with quantification-oriented losses

In order to run experiments involving SVM(Q), SVM(KLD), SVM(NKLD), SVM(AE), or SVM(RAE), you have to first download the svmperf package, apply the patch svm-perf-quantification-ext.patch, and compile the sources. The script prepare_svmperf.sh does all the job. Simply run:

./prepare_svmperf.sh

The resulting directory svm_perf_quantification contains the patched version of svmperf with quantification-oriented losses.

The svm-perf-quantification-ext.patch is an extension of the patch made available by Esuli et al. 2015 that allows SVMperf to optimize for the Q measure as proposed by Barranquero et al. 2015 and for the KLD and NKLD measures as proposed by Esuli et al. 2015. This patch extends the above one by also allowing SVMperf to optimize for AE and RAE.

Wiki

Check out our Wiki, in which many examples are provided:

Comments
  • Couldn't train QuaNet on multiclass data

    Couldn't train QuaNet on multiclass data

    Hi, I am having trouble in training a QuaNet quantifier for multiclass (20) data. Everything works fine with where my dataset only has 2 classes. It looks like the ACC quantifier is not able to aggregate from more than 2 classes?

    The classifier is built and trained as with the code below

    classifier = LSTMnet(dataset.vocabulary_size, dataset.n_classes)
    learner = NeuralClassifierTrainer(classifier)
    learner.fit(*dataset.training.Xy)
    

    where it has all the default configurations

    {'embedding_size': 100, 'hidden_size': 256, 'repr_size': 100, 'lstm_class_nlayers': 1, 'drop_p': 0.5}

    Then I tried to train QuaNet with following code

    model = QuaNetTrainer(learner, qp.environ['SAMPLE_SIZE'])
    model.fit(dataset.training, fit_learner=False)
    

    and it showed that QuaNet is built as

    QuaNetModule( (lstm): LSTM(120, 64, batch_first=True, dropout=0.5, bidirectional=True) (dropout): Dropout(p=0.5, inplace=False) (ff_layers): ModuleList( (0): Linear(in_features=208, out_features=1024, bias=True) (1): Linear(in_features=1024, out_features=512, bias=True) ) (output): Linear(in_features=512, out_features=20, bias=True) )

    And then the error occured in model.fit().

    Attached is the error I get.

    Traceback (most recent call last): File "quanet-test.py", line 181, in model.fit(dataset.training, fit_learner=False) File "/home/vickys/.local/lib/python3.6/site-packages/quapy/method/neural.py", line 126, in fit self.epoch(train_data_embed, train_posteriors, self.tr_iter, epoch_i, early_stop, train=True) File "/home/vickys/.local/lib/python3.6/site-packages/quapy/method/neural.py", line 182, in epoch quant_estims = self.get_aggregative_estims(sample_posteriors) File "/home/vickys/.local/lib/python3.6/site-packages/quapy/method/neural.py", line 145, in get_aggregative_estims prevs_estim.extend(quantifier.aggregate(predictions)) File "/home/vickys/.local/lib/python3.6/site-packages/quapy/method/aggregative.py", line 238, in aggregate return ACC.solve_adjustment(self.Pte_cond_estim_, prevs_estim) File "/home/vickys/.local/lib/python3.6/site-packages/quapy/method/aggregative.py", line 246, in solve_adjustment adjusted_prevs = np.linalg.solve(A, B) File "<array_function internals>", line 6, in solve File "/usr/local/lib64/python3.6/site-packages/numpy/linalg/linalg.py", line 394, in solve r = gufunc(a, b, signature=signature, extobj=extobj) ValueError: solve1: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (m,m),(m)->(m) (size 2 is different from 20)

    Thank you!

    opened by vickysvicky 4
  • Parameter fit_learner in QuaNetTrainer (fit method)

    Parameter fit_learner in QuaNetTrainer (fit method)

    The parameter fit_leaner is not used in the function:

    def fit(self, data: LabelledCollection, fit_learner=True):

    and the learner is fitted every time:

    self.learner.fit(*classifier_data.Xy)

    opened by pglez82 1
  • Wiki correction

    Wiki correction

    In the last part of the Methods wiki page, where it says:

    from classification.neural import NeuralClassifierTrainer, CNNnet

    I think it should say:

    from quapy.classification.neural import NeuralClassifierTrainer, LSTMnet

    opened by pglez82 1
  • Error in LSTMnet

    Error in LSTMnet

    I think there is the function init_hidden:

    def init_hidden(self, set_size):
            opt = self.hyperparams
            var_hidden = torch.zeros(opt['lstm_nlayers'], set_size, opt['lstm_hidden_size'])
            var_cell = torch.zeros(opt['lstm_nlayers'], set_size, opt['lstm_hidden_size'])
            if next(self.lstm.parameters()).is_cuda:
                var_hidden, var_cell = var_hidden.cuda(), var_cell.cuda()
            return var_hidden, var_cell
    

    Where it says opt['lstm_hidden_size'] should be opt['hidden_size']

    opened by pglez82 1
  • EMQ can be instantiated with a transformation function

    EMQ can be instantiated with a transformation function

    This transformation function is applied to each intermediate estimate.

    Why should someone want to transform the prior between two iterations? A transformation of the prior is a heuristic, yet effective way of promoting desired properties of the solution. For instance,

    • small values could be enhanced if the data is extremely imbalanced
    • small values could be reduced if the user is looking for a sparse solution
    • neighboring values could be averaged if the user is looking for a smooth solution
    • the function could also leave the prior unaltered and just be used as a callback for logging the progress of the method

    I hope this feature is useful. Let me know what you think!

    opened by mirkobunse 0
  • fixing two problems with parameters: hidden_size and lstm_nlayers

    fixing two problems with parameters: hidden_size and lstm_nlayers

    I found another problem with a parameter. When using LSTMnet with QuaNet two parameters overlap (lstm_nlayers). I have renamed the one in the LSTMnet to lstm_class_nlayers.

    opened by pglez82 0
  • Using a different gpu than cuda:0

    Using a different gpu than cuda:0

    The code seems to be tied up to using only 'cuda', which by default uses the first gpu in the system ('cuda:0'). It would be handy to be able to tell the library in which cuda gpu you want to train (cuda:0, cuda:1, etc).

    opened by pglez82 0
Releases(0.1.6)
Owner
The Human Language Technologies group of ISTI-CNR
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
Bytedance Inc. 2.5k Jan 06, 2023
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022