Malware Env for OpenAI Gym

Overview

Malware Env for OpenAI Gym


Citing

If you use this code in a publication please cite the following paper:


Hyrum S. Anderson, Anant Kharkar, Bobby Filar, David Evans, Phil Roth, "Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning", in ArXiv e-prints. Jan. 2018.

@ARTICLE{anderson2018learning,
  author={Anderson, Hyrum S and Kharkar, Anant and Filar, Bobby and Evans, David and Roth, Phil},
  title={Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning},
  journal={arXiv preprint arXiv:1801.08917},
  archivePrefix = "arXiv",
  eprint = {1801.08917},
  primaryClass = "cs.CR",
  keywords = {Computer Science - Cryptography and Security},
  year = 2018,
  month = jan,
  adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180108917A},
}

This is a malware manipulation environment for OpenAI's gym. OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms. This makes it possible to write agents that learn to manipulate PE files (e.g., malware) to achieve some objective (e.g., bypass AV) based on a reward provided by taking specific manipulation actions.

Objective

Create an AI that learns through reinforcement learning which functionality-preserving transformations to make on a malware sample to break through / bypass machine learning static-analysis malware detection.

Breakout

Basics

There are two basic concepts in reinforcement learning: the environment (in our case, the malware sample) and the agent (namely, the algorithm used to change the environment). The agent sends actions to the environment, and the environment replies with observations and rewards (that is, a score).

This repo provides an environment for manipulating PE files and providing rewards that are based around bypassing AV. An agent can be deployed that have already been written for the rich gym framework. For example

Setup

The EvadeRL framework is built on Python3.6 we recommend first creating a virtualenv (details can be found here) with Python3.6 then performing the following actions ensure you have the correct python libraries:

pip install -r requirements.txt

EvadeRL also leverages a Library to Instrument Executable Formats aptly named LIEF. It allows our agent to modify the binary on-the-fly. To add it to your virtualenv just pip install one of their pre-built packages. Examples below:

Linux

pip install https://github.com/lief-project/LIEF/releases/download/0.7.0/linux_lief-0.7.0_py3.6.tar.gz

OSX

pip install https://github.com/lief-project/LIEF/releases/download/0.7.0/osx_lief-0.7.0_py3.6.tar.gz

Once completed ensure you've moved malware samples into the

gym_malware/gym_malware/envs/utils/samples/

If you are unsure where to acquire malware samples see the Data Acquisition section below. If you have samples in the correct directory you can check to see if your environment is correctly setup by running :

python test_agent_chainer.py

Note that if you are using Anaconda, you may need to

conda install libgcc

in order for LIEF to operate properly.

Data Acquisition

If you have a VirusTotal API key, you may download samples to the gym_malware/gym_malware/envs/utils/samples/ using the Python script download_samples.py.

Gym-Malware Environment

EvadeRL pits a reinforcement agent against the malware environment consisting of the following components:

  • Action Space
  • Independent Malware Classifier
  • OpenAI framework malware environment (aka gym-malware)

Action Space

The moves or actions that can be performed on a malware sample in our environment consist of the following binary manipulations:

  • append_zero
  • append_random_ascii
  • append_random_bytes
  • remove_signature
  • upx_pack
  • upx_unpack
  • change_section_names_from_list
  • change_section_names_to random
  • modify_export
  • remove_debug
  • break_optional_header_checksum

The agent will randomly select these actions in an attempt to bypass the classifier (info on default classifier below). Over time, the agent learns which combinations lead to the highest rewards, or learns a policy (like an optimal plan of attack for any given observation).

Independent Classifier

Included as a default model is a gradient boosted decision trees model trained on 50k malicious and 50k benign samples with the following features extracted:

  • Byte-level data (e.g. histogram and entropy)
  • Header
  • Section
  • Import/Exports
Owner
ENDGAME
ENDGAME
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021