Official PyTorch implementation of RIO

Overview

NVIDIA Source Code License Python 3.6

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection

Figure 1: Our proposed Resampling at image-level and obect-level (RIO).

Project page | Paper

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection.
Nadine Chang, Zhiding Yu, Yu-Xiong Wang, Anima Anandkumar, Sanja Fidler, Jose M. Alvarez.
ICML 2021.

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for RIO.

Abstract

Training on datasets with long-tailed distributions has been challenging for major recognition tasks such as classification and detection. To deal with this challenge, image resampling is typically introduced as a simple but effective approach. However, we observe that long-tailed detection differs from classification since multiple classes may be present in one image. As a result, image resampling alone is not enough to yield a sufficiently balanced distribution at the object level. We address object-level resampling by introducing an object-centric memory replay strategy based on dynamic, episodic memory banks. Our proposed strategy has two benefits: 1) convenient object-level resampling without significant extra computation, and 2) implicit feature-level augmentation from model updates. We show that image-level and object-level resamplings are both important, and thus unify them with a joint resampling strategy (RIO). Our method outperforms state-of-the-art long-tailed detection and segmentation methods on LVIS v0.5 across various backbones.

Requirements

  • Linux or maxOS with Python >= 3.6
  • PyTorch >= 1.5 and torchvision corresponding to PyTorch installation. Please refer to download guildlines at the PyTorch website
  • Detectron2
  • OpenCV is optional but required for visualizations

Installation

Detectron2

Please refer to the installation instructions in Detectron2.

We use Detectron2 v0.3 as the codebase. Thus, we advise installing Detectron2 from a clone of this repository.

LVIS Dataset

Dataset download is available at the official LVIS website. Please follow Detectron's guildlines on expected LVIS dataset structure.

Our Setup

  • Python 3.6.9
  • PyTorch 1.5.0 with CUDA 10.2
  • Detectron2 built from this repository.

Pretrained Models

Detection and Instance Segmentation on LVIS v0.5

Backbone Method AP.b AP.b.r AP.b.c AP.b.f AP.m AP.m.r AP.m.c AP.m.f download
R50-FPN MaskRCNN-RIO 25.7 17.2 25.1 29.8 26.0 18.9 26.2 28.5 model
R101-FPN MaskRCNN-RIO 27.3 19.1 26.8 31.2 27.7 20.1 28.3 30.0 model
X101-FPN MaskRCNN-RIO 28.6 19.0 28.0 33.0 28.9 19.5 29.7 31.6 model

Training & Evaluation

Our code is located under projects/RIO.

Our training and evaluation follows those of Detectron2's. We've provided config files for both LVISv0.5 and LVISv1.0.

Example: Training LVISv0.5 on Mask-RCNN ResNet-50

# We advise multi-gpu training
cd projects/RIO
python memory_train_net.py \
--num-gpus 4 \
--config-file=configs/LVISv0.5-InstanceSegmentation/memory_mask_rcnn_R_50_FPN_1x.yaml 

Example: Evaluating LVISv0.5 on Mask-RCNN ResNet-50

cd projects/RIO
python memory_train_net.py \
--eval-only MODEL.WEIGHTS /path/to/model_checkpoint \
--config-file configs/LVISv0.5-InstanceSegmentation/memory_mask_rcnn_R_50_FPN_1x.yaml  

By default, LVIS evaluation follows immediately after training.

Visualization

Detectron2 has built-in visualization tools. Under tools folder, visualize_json_results.py can be used to visualize the json instance detection/segmentation results given by LVISEvaluator.

python visualize_json_results.py --input x.json --output dir/ --dataset lvis

Further information can be found on Detectron2 tools' README.

License

Please check the LICENSE file. RIO may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

@article{chang2021image,
  title={Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection},
  author={Chang, Nadine and Yu, Zhiding and Wang, Yu-Xiong and Anandkumar, Anima and Fidler, Sanja and Alvarez, Jose M},
  journal={arXiv preprint arXiv:2104.05702},
  year={2021}
}
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022