Official PyTorch implementation of RIO

Overview

NVIDIA Source Code License Python 3.6

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection

Figure 1: Our proposed Resampling at image-level and obect-level (RIO).

Project page | Paper

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection.
Nadine Chang, Zhiding Yu, Yu-Xiong Wang, Anima Anandkumar, Sanja Fidler, Jose M. Alvarez.
ICML 2021.

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for RIO.

Abstract

Training on datasets with long-tailed distributions has been challenging for major recognition tasks such as classification and detection. To deal with this challenge, image resampling is typically introduced as a simple but effective approach. However, we observe that long-tailed detection differs from classification since multiple classes may be present in one image. As a result, image resampling alone is not enough to yield a sufficiently balanced distribution at the object level. We address object-level resampling by introducing an object-centric memory replay strategy based on dynamic, episodic memory banks. Our proposed strategy has two benefits: 1) convenient object-level resampling without significant extra computation, and 2) implicit feature-level augmentation from model updates. We show that image-level and object-level resamplings are both important, and thus unify them with a joint resampling strategy (RIO). Our method outperforms state-of-the-art long-tailed detection and segmentation methods on LVIS v0.5 across various backbones.

Requirements

  • Linux or maxOS with Python >= 3.6
  • PyTorch >= 1.5 and torchvision corresponding to PyTorch installation. Please refer to download guildlines at the PyTorch website
  • Detectron2
  • OpenCV is optional but required for visualizations

Installation

Detectron2

Please refer to the installation instructions in Detectron2.

We use Detectron2 v0.3 as the codebase. Thus, we advise installing Detectron2 from a clone of this repository.

LVIS Dataset

Dataset download is available at the official LVIS website. Please follow Detectron's guildlines on expected LVIS dataset structure.

Our Setup

  • Python 3.6.9
  • PyTorch 1.5.0 with CUDA 10.2
  • Detectron2 built from this repository.

Pretrained Models

Detection and Instance Segmentation on LVIS v0.5

Backbone Method AP.b AP.b.r AP.b.c AP.b.f AP.m AP.m.r AP.m.c AP.m.f download
R50-FPN MaskRCNN-RIO 25.7 17.2 25.1 29.8 26.0 18.9 26.2 28.5 model
R101-FPN MaskRCNN-RIO 27.3 19.1 26.8 31.2 27.7 20.1 28.3 30.0 model
X101-FPN MaskRCNN-RIO 28.6 19.0 28.0 33.0 28.9 19.5 29.7 31.6 model

Training & Evaluation

Our code is located under projects/RIO.

Our training and evaluation follows those of Detectron2's. We've provided config files for both LVISv0.5 and LVISv1.0.

Example: Training LVISv0.5 on Mask-RCNN ResNet-50

# We advise multi-gpu training
cd projects/RIO
python memory_train_net.py \
--num-gpus 4 \
--config-file=configs/LVISv0.5-InstanceSegmentation/memory_mask_rcnn_R_50_FPN_1x.yaml 

Example: Evaluating LVISv0.5 on Mask-RCNN ResNet-50

cd projects/RIO
python memory_train_net.py \
--eval-only MODEL.WEIGHTS /path/to/model_checkpoint \
--config-file configs/LVISv0.5-InstanceSegmentation/memory_mask_rcnn_R_50_FPN_1x.yaml  

By default, LVIS evaluation follows immediately after training.

Visualization

Detectron2 has built-in visualization tools. Under tools folder, visualize_json_results.py can be used to visualize the json instance detection/segmentation results given by LVISEvaluator.

python visualize_json_results.py --input x.json --output dir/ --dataset lvis

Further information can be found on Detectron2 tools' README.

License

Please check the LICENSE file. RIO may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

@article{chang2021image,
  title={Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection},
  author={Chang, Nadine and Yu, Zhiding and Wang, Yu-Xiong and Anandkumar, Anima and Fidler, Sanja and Alvarez, Jose M},
  journal={arXiv preprint arXiv:2104.05702},
  year={2021}
}
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023