Instance-based label smoothing for improving deep neural networks generalization and calibration

Overview

Instance-based Label Smoothing for Neural Networks

  • Pytorch Implementation of the algorithm.
  • This repository includes a new proposed method for instance-based label smoothing in neural networks, where the target probability distribution is not uniformly distributed among incorrect classes. Instead, each incorrect class is going to be assigned a target probability that is proportional to the output score of this particular class relative to all the remaining classes for a network trained with vanilla cross-entropy loss on the hard target labels.
Instance-based Label Smoothing idea
  • The following figure summarizes the idea of our instance-based label smoothing that aims to keep the information about classes similarity structure while training using label smoothing.
Instance-based Label Smoothing process

Requirements

  • Python 3.x
  • pandas
  • numpy
  • pytorch

Usage

Datasets

  • CIFAR10 / CIFAR100 / FashionMNIST

Files Content

The project have a structure as below:

├── Vanilla-cross-entropy.py
├── Label-smoothing.py
├── Instance-based-smoothing.py
├── Models-evaluation.py
├── Network-distillation.py
├── utils
│   ├── data_loader.py
│   ├── utils.py
│   ├── evaluate.py
│   ├── params.json
├── models
│   ├── resnet.py
│   ├── densenet.py
│   ├── inception.py
│   ├── shallownet.py

Vanilla-cross-entropy.py is the file used for training the networks using cross-entropy without label smoothing.
Label-smoothing.py is the file used for training the networks using cross-entropy with standard label smoothing.
Instance-based-smoothing.py is the file used for training the networks using cross-entropy with instance-based label smoothing.
Models-evaluation.py is the file used for evaluation of the trained networks.
Network-distillation.py is the file used for distillation of trained networks into a shallow convolutional network of 5 layers.
models/ includes all the implementations of the different architectures used in our evaluation like ResNet, DenseNet, Inception-V4. Also, the shallow-cnn student network used in distillation experiments.
utils/ includes all utilities functions required for the different models training and evaluation.

Example

python Instance-based-smoothing.py --dataset cifar10 --model resnet18 --num_classes 10

List of Arguments accepted for Codes of Training and Evaluation of Different Models:

--lr type = float, default = 0.1, help = Starting learning rate (A weight decay of $1e^{-4}$ is used).
--tr_size type = float, default = 0.8, help = Size of training set split out of the whole training set (0.2 for validation).
--batch_size type = int, default = 512, help = Batch size of mini-batch training process.
--epochs type = int, default = 100, help = Number of training epochs.
--estop type = int, default = 10, help = Number of epochs without loss improvement leading to early stopping.
--ece_bins type = int, default = 10, help = Number of bins for expected calibration error calculation.
--dataset, type=str, help=Name of dataset to be used (cifar10/cifar100/fashionmnist).
--num_classes type = int, default = 10, help = Number of classes in the dataset.
--model, type=str, help=Name of the model to be trained. eg: resnet18 / resnet50 / inceptionv4 / densetnet (works for FashionMNIST only).

Results

  • Results of the comparison of different methods on 3 datasets using 4 different architectures are reported in the following table.
  • The experiments were repeated 3 times, and average $\pm$ stdev of log loss, expected calibration error (ECE), accuracy, distilled student network accuracy and distilled student log loss metrics are reported.
  • A t-sne visualization for the logits of 3-different classes in CIFAR-10 can be shown below:
Owner
Mohamed Maher
Junior Research Fellow
Mohamed Maher
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022