Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

Overview

fwhr-calc-website

This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure. Used in

Built with

  • Python 3.6
  • Dlib
  • Opencv
  • Flask

Getting started

Prerequisites

  1. python version 3.6 with Anaconda distribution (no guarantee for other versions)
    • You can download Anaconda Individual Edition in [here] (https://www.anaconda.com/products/individual)
    • Check your anaconda installation by conda -V
    • Create a virtual environment by conda create -n [name] python=3.6 and activate the venv by conda activate [name]
  2. Clone this repo.
    • git clone https://github.com/haileypark-kr/fwhr-calc-website.git
  3. Microsoft Azure Face Api Key
    1. Create an Azure account and a Cognitive Service Face API resource in Azure Portal. Read [this] (https://docs.microsoft.com/en-us/azure/cognitive-services/face/) documentation.
    2. Generate keys to access your API. (Resource Management > Keys and Endpoint)
    3. Make a file named azure_faceapi_key.conf and paste the first key in the file. (you can change the file name if you want, but make sure you also change .gitignore and config.py) Do not upload this file to GitHub.
    4. Replace the variable FACE_API_ENDPOINT in config.py with your endpoint.
      # config.py
      
      FACE_API_ENDPOINT = "https://eastasia.api.cognitive.microsoft.com"
      

Installation

Install python libraries in this project's root directory.

  • pip install -r requirements.txt
  • Some libraries (dlib) cannot be installed by pip - should be installed using conda with conda install -y -c conda-forge dlib

Usage

There are two ways to run this application.

  • Running a flask web server: If you want to analyze a few facial images with GUI.
  • Running fWHR calcaculating script: If you want to analyze thousands of images

Running a flask web server

  1. Command: python app.py
  2. Open a Chrome browser and enter 127.0.0.1:5001
  3. Select some images and press Submit button.
  4. Wait and do not reload the browser.
  5. Anlysis result will be downloaded shortly (in xlsx format)

Running fWHR calcaculating script

  1. Command: python fWHR_main.py --dataroot [path to the image directory]
  2. Wait
  3. Go to data/output direcetory and get the analysis result file.
Owner
SoohyunPark
Soohyun Park. Interests in computer vision and backend
SoohyunPark
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022