A graph adversarial learning toolbox based on PyTorch and DGL.

Related tags

Deep LearningGraphWar
Overview

GraphWar: Arms Race in Graph Adversarial Learning

NOTE: GraphWar is still in the early stages and the API will likely continue to change.

πŸš€ Installation

Please make sure you have installed PyTorch and Deep Graph Library(DGL).

# Comming soon
pip install -U graphwar

or

# Recommended
git clone https://github.com/EdisonLeeeee/GraphWar.git && cd GraphWar
pip install -e . --verbose

where -e means "editable" mode so you don't have to reinstall every time you make changes.

Get Started

Assume that you have a dgl.DGLgraph instance g that describes you dataset.

A simple targeted attack

from graphwar.attack.targeted import RandomAttack
attacker = RandomAttack(g)
attacker.attack(1, num_budgets=3) # attacking target node `1` with `3` edges 
attacked_g = attacker.g()
edge_flips = attacker.edge_flips()

A simple untargeted attack

from graphwar.attack.untargeted import RandomAttack
attacker = RandomAttack(g)
attacker.attack(num_budgets=0.05) # attacking the graph with 5% edges perturbations
attacked_g = attacker.g()
edge_flips = attacker.edge_flips()

Implementations

In detail, the following methods are currently implemented:

Attack

Targeted Attack

Methods Venue
RandomAttack A simple random method that chooses edges to flip randomly.
DICEAttack Marcin Waniek et al. πŸ“ Hiding Individuals and Communities in a Social Network, Nature Human Behavior'16
Nettack Daniel ZΓΌgner et al. πŸ“ Adversarial Attacks on Neural Networks for Graph Data, KDD'18
FGAttack Jinyin Chen et al. πŸ“ Fast Gradient Attack on Network Embedding, arXiv'18
Jinyin Chen et al. πŸ“ Link Prediction Adversarial Attack Via Iterative Gradient Attack, IEEE Trans'20
Hanjun Dai et al. πŸ“ Adversarial Attack on Graph Structured Data, ICML'18
GFAttack Heng Chang et al. πŸ“ A Restricted Black - box Adversarial Framework Towards Attacking Graph Embedding Models, AAAI'20
IGAttack Huijun Wu et al. πŸ“ Adversarial Examples on Graph Data: Deep Insights into Attack and Defense, IJCAI'19
SGAttack Jintang Li et al. πŸ“ Adversarial Attack on Large Scale Graph, TKDE'21

Untargeted Attack

Methods Venue
RandomAttack A simple random method that chooses edges to flip randomly
DICEAttack Marcin Waniek et al. πŸ“ Hiding Individuals and Communities in a Social Network, Nature Human Behavior'16
FGAttack Jinyin Chen et al. πŸ“ Fast Gradient Attack on Network Embedding, arXiv'18
Jinyin Chen et al. πŸ“ Link Prediction Adversarial Attack Via Iterative Gradient Attack, IEEE Trans'20
Hanjun Dai et al. πŸ“ Adversarial Attack on Graph Structured Data, ICML'18
Metattack Daniel ZΓΌgner et al. πŸ“ Adversarial Attacks on Graph Neural Networks via Meta Learning, ICLR'19
PGD, MinmaxAttack Kaidi Xu et al. πŸ“ Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective, IJCAI'19

Defense

Model-Level

Methods Venue
MedianGCN Liang Chen et al. πŸ“ Understanding Structural Vulnerability in Graph Convolutional Networks, IJCAI'21
RobustGCN Dingyuan Zhu et al. πŸ“ Robust Graph Convolutional Networks Against Adversarial Attacks, KDD'19

Data-Level

Methods Venue
JaccardPurification Huijun Wu et al. πŸ“ Adversarial Examples on Graph Data: Deep Insights into Attack and Defense, IJCAI'19

More details of literatures and the official codes can be found in Awesome Graph Adversarial Learning.

Comments
  • Benchmark Results of Attack Performance

    Benchmark Results of Attack Performance

    Hi, thanks for sharing the awesome repo with us! I recently run the attack sample code but the resultpgd_attack.py and random_attack.py under examples/attack/untargeted, but the accuracies of both evasion and poison attack seem not to decrease.

    I'm pretty confused by the attack results. For CV models, pgd attack easily decreases the accuracy to nearly random guesses, but the results of GreatX seem not to consent with CV models. Is it because the number of the perturbed edges is too small?

    Here are the results of pgd_attack.py

    Processing...
    Done!
    Training...
    100/100 [==============================] - Total: 874.37ms - 8ms/step- loss: 0.0524 - acc: 0.996 - val_loss: 0.625 - val_acc: 0.815
    Evaluating...
    1/1 [==============================] - Total: 1.82ms - 1ms/step- loss: 0.597 - acc: 0.843
    Before attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.59718  β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.842555 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    PGD training...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 200/200 [00:02<00:00, 69.74it/s]
    Bernoulli sampling...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 20/20 [00:00<00:00, 804.86it/s]
    Evaluating...
    1/1 [==============================] - Total: 2.11ms - 2ms/step- loss: 0.603 - acc: 0.842
    After evasion attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.603293 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.842052 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    Training...
    100/100 [==============================] - Total: 535.83ms - 5ms/step- loss: 0.124 - acc: 0.976 - val_loss: 0.728 - val_acc: 0.779
    Evaluating...
    1/1 [==============================] - Total: 1.74ms - 1ms/step- loss: 0.766 - acc: 0.827
    After poisoning attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.76604  β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.826962 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    

    Here are the results of random_attack.py

    Training...
    100/100 [==============================] - Total: 600.92ms - 6ms/step- loss: 0.0615 - acc: 0.984 - val_loss: 0.626 - val_acc: 0.811
    Evaluating...
    1/1 [==============================] - Total: 1.93ms - 1ms/step- loss: 0.564 - acc: 0.832
    Before attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.564449 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.832495 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    Peturbing graph...: 253it [00:00, 4588.44it/s]
    Evaluating...
    1/1 [==============================] - Total: 2.14ms - 2ms/step- loss: 0.585 - acc: 0.826
    After evasion attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.584646 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.826459 β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    Training...
    100/100 [==============================] - Total: 530.04ms - 5ms/step- loss: 0.0767 - acc: 0.98 - val_loss: 0.574 - val_acc: 0.791
    Evaluating...
    1/1 [==============================] - Total: 1.77ms - 1ms/step- loss: 0.695 - acc: 0.813
    After poisoning attack
     Objects in BunchDict:
    ╒═════════╀═══════════╕
    β”‚ Names   β”‚   Objects β”‚
    β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║
    β”‚ loss    β”‚  0.695349 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ acc     β”‚  0.81338  β”‚
    β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›
    
    opened by ziqi-zhang 2
  • SG Attack example cannot run as expected on cuda

    SG Attack example cannot run as expected on cuda

    Hello, I got some error when I run SG Attack's example code on cuda device:

    Traceback (most recent call last):
      File "src/test.py", line 50, in <module>
        attacker.attack(target)
      File "/greatx/attack/targeted/sg_attack.py", line 212, in attack
        subgraph = self.get_subgraph(target, target_label, best_wrong_label)
      File "/greatx/attack/targeted/sg_attack.py", line 124, in get_subgraph
        self.label == best_wrong_label)[0].cpu().numpy()
    RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:3 and cpu!
    

    I found self.label is on cuda device, but best_wrong_label is on cpu. https://github.com/EdisonLeeeee/GreatX/blob/73eac351fdae842dbd74967622bd0e573194c765/greatx/attack/targeted/sg_attack.py#L123-L124

    I remove line94 .cpu(), everything is going well and no error report

    https://github.com/EdisonLeeeee/GreatX/blob/73eac351fdae842dbd74967622bd0e573194c765/greatx/attack/targeted/sg_attack.py#L94-L96

    I found there is a commit that adds .cpu end of line 94, so I dont know it's a bug or something else🀨

    opened by beiyanpiki 1
  • problem with metattack

    problem with metattack

    Thanks for this wonderful repo. However, when I run the metattack example ,the result is not promising Here is my result when attack Cora with metattack Training... 100/100 [====================] - Total: 520.68ms - 5ms/step- loss: 0.0713 - acc: 0.996 - val_loss: 0.574 - val_acc: 0.847 Evaluating... 1/1 [====================] - Total: 2.01ms - 2ms/step- loss: 0.522 - acc: 0.847 Before attack ╒═════════╀═══════════╕ β”‚ Names β”‚ Objects β”‚ β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ loss β”‚ 0.521524 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ acc β”‚ 0.846579 β”‚ β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•› Peturbing graph...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 253/253 [01:00<00:00, 4.17it/s]Evaluating... 1/1 [====================] - Total: 2.08ms - 2ms/step- loss: 0.528 - acc: 0.844 After evasion attack ╒═════════╀═══════════╕ β”‚ Names β”‚ Objects β”‚ β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ loss β”‚ 0.528431 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ acc β”‚ 0.844064 β”‚ β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•› Training... 32/100 [=====>..............] - ETA: 0s- loss: 0.212 - acc: 0.956 - val_loss: 0.634 - val_acc: 0.807 100/100 [====================] - Total: 407.58ms - 4ms/step- loss: 0.0601 - acc: 0.996 - val_loss: 0.704 - val_acc: 0.787 Evaluating... 1/1 [====================] - Total: 1.66ms - 1ms/step- loss: 0.711 - acc: 0.819 After poisoning attack ╒═════════╀═══════════╕ β”‚ Names β”‚ Objects β”‚ β•žβ•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ loss β”‚ 0.710625 β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ acc β”‚ 0.818913 β”‚ β•˜β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•›

    opened by shanzhiq 1
  • Fix a venue of FeaturePropagation

    Fix a venue of FeaturePropagation

    Rossi's FeaturePropagation paper was submitted to ICLR'21 but was rejected. So how about updating with arXiv? This paper has not yet been accepted by other conferences.

    bug documentation 
    opened by jeongwhanchoi 1
  • Add ratio for `attacker.data()`, `attacker.edge_flips()`, and `attacker.feat_flips()`

    Add ratio for `attacker.data()`, `attacker.edge_flips()`, and `attacker.feat_flips()`

    This PR allows specifying an argument ratio for attacker.edge_flips(), and attacker.feat_flips(), which determines how many generated perturbations were used for further evaluation/visualization. Correspondingly, attacker.data() holds edge_ratio and feat_ratio for these two methods when constructing perturbed graph.

    • Example
    attacker = ...
    attacker.reset()
    attacker.attack(...)
    
    # Case1: Only 50% of generated edge perturbations were used
    trainer.evaluate(attacker.data(edge_ratio=0.5), mask=...)
    
    # Case2: Only 50% of generated feature perturbations were used
    trainer.evaluate(attacker.data(feat_ratio=0.5), mask=...)
    
    # NOTE: both arguments can be used simultaneously
    
    enhancement 
    opened by EdisonLeeeee 0
Releases(0.1.0)
  • 0.1.0(Jun 9, 2022)

    GraphWar 0.1.0 πŸŽ‰

    The first major release, built upon PyTorch and PyTorch Geometric (PyG).

    About GraphWar

    GraphWar is a graph adversarial learning toolbox based on PyTorch and PyTorch Geometric (PyG). It implements a wide range of adversarial attacks and defense methods focused on graph data. To facilitate the benchmark evaluation on graphs, we also provide a set of implementations on popular Graph Neural Networks (GNNs).

    Usages

    For more details, please refer to the documentation and examples.

    How fast can we train and evaluate your own GNN?

    Take GCN as an example:

    from graphwar.nn.models import GCN
    from graphwar.training import Trainer
    from torch_geometric.datasets import Planetoid
    dataset = Planetoid(root='.', name='Cora') # Any PyG dataset is available!
    data = dataset[0]
    model = GCN(dataset.num_features, dataset.num_classes)
    trainer = Trainer(model, device='cuda:0')
    trainer.fit({'data': data, 'mask': data.train_mask})
    trainer.evaluate({'data': data, 'mask': data.test_mask})
    

    A simple targeted manipulation attack

    from graphwar.attack.targeted import RandomAttack
    attacker = RandomAttack(data)
    attacker.attack(1, num_budgets=3) # attacking target node `1` with `3` edges 
    attacked_data = attacker.data()
    edge_flips = attacker.edge_flips()
    
    

    A simple untargeted (non-targeted) manipulation attack

    from graphwar.attack.untargeted import RandomAttack
    attacker = RandomAttack(data)
    attacker.attack(num_budgets=0.05) # attacking the graph with 5% edges perturbations
    attacked_data = attacker.data()
    edge_flips = attacker.edge_flips()
    

    We will continue to develop this project and introduce more state-of-the-art implementations of papers in the field of graph adversarial attacks and defenses.

    Source code(tar.gz)
    Source code(zip)
    graphwar-0.1.0-py3-none-any.whl(155.84 KB)
Owner
Jintang Li
Ph.D. student @ Sun Yat-sen University (SYSU), China.
Jintang Li
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of TΓΌbingen) 195 Dec 29, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild RΔ±za Alp GΓΌler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022