Pseudo-Visual Speech Denoising

Overview

Pseudo-Visual Speech Denoising

This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021.
Authors: Sindhu Hegde*, K R Prajwal*, Rudrabha Mukhopadhyay*, Vinay Namboodiri, C.V. Jawahar

PWC PWC

📝 Paper 📑 Project Page 🛠 Demo Video 🗃 Real-World Test Set
Paper Website Video Real-World Test Set (coming soon)


Features

  • Denoise any real-world audio/video and obtain the clean speech.
  • Works in unconstrained settings for any speaker in any language.
  • Inputs only audio but uses the benefits of lip movements by generating a synthetic visual stream.
  • Complete training code and inference codes available.

Prerequisites

  • Python 3.7.4 (Code has been tested with this version)
  • ffmpeg: sudo apt-get install ffmpeg
  • Install necessary packages using pip install -r requirements.txt
  • Face detection pre-trained model should be downloaded to face_detection/detection/sfd/s3fd.pth

Getting the weights

Model Description Link to the model
Denoising model Weights of the denoising model (needed for inference) Link
Lipsync student Weights of the student lipsync model to generate the visual stream for noisy audio inputs (needed for inference) Link
Wav2Lip teacher Weights of the teacher lipsync model (only needed if you want to train the network from scratch) Link

Denoising any audio/video using the pre-trained model (Inference)

You can denoise any noisy audio/video and obtain the clean speech of the target speaker using:

python inference.py --lipsync_student_model_path= --checkpoint_path= --input=

The result is saved (by default) in results/result.mp4. The result directory can be specified in arguments, similar to several other available options. The input file can be any audio file: *.wav, *.mp3 or even a video file, from which the code will automatically extract the audio and generate the clean speech. Note that the noise should not be human speech, as this work only tackles the denoising task, not speaker separation.

Generating only the lip-movements for any given noisy audio/video

The synthetic visual stream (lip-movements) can be generated for any noisy audio/video using:

cd lipsync
python inference.py --checkpoint_path= --audio=

The result is saved (by default) in results/result_voice.mp4. The result directory can be specified in arguments, similar to several other available options. The input file can be any audio file: *.wav, *.mp3 or even a video file, from which the code will automatically extract the audio and generate the visual stream.

Training

We illustrate the training process using the LRS3 and VGGSound dataset. Adapting for other datasets would involve small modifications to the code.

Preprocess the dataset

LRS3 train-val/pre-train dataset folder structure
data_root (we use both train-val and pre-train sets of LSR3 dataset in this work)
├── list of folders
│   ├── five-digit numbered video IDs ending with (.mp4)
Preprocess the dataset
python preprocess.py --data_root= --preprocessed_root=

Additional options like batch_size and number of GPUs to use in parallel to use can also be set.

Preprocessed LRS3 folder structure
preprocessed_root (lrs3_preprocessed)
├── list of folders
|	├── Folders with five-digit numbered video IDs
|	│   ├── *.jpg (extracted face crops from each frame)
VGGSound folder structure

We use VGGSound dataset as noisy data which is mixed with the clean speech from LRS3 dataset. We download the audio files (*.wav files) from here.

data_root (vgg_sound)
├── *.wav (audio files)

Train!

There are two major steps: (i) Train the student-lipsync model, (ii) Train the Denoising model.

Train the Student-Lipsync model

Navigate to the lipsync folder: cd lipsync

The lipsync model can be trained using:

python train_student.py --data_root_lrs3_pretrain= --data_root_lrs3_train= --noise_data_root= --wav2lip_checkpoint_path= --checkpoint_dir=

Note: The pre-trained Wav2Lip teacher model must be downloaded (wav2lip weights) before training the student model.

Train the Denoising model!

Navigate to the main directory: cd ..

The denoising model can be trained using:

python train.py --data_root_lrs3_pretrain= --data_root_lrs3_train= --noise_data_root= --lipsync_student_model_path= --checkpoint_dir=

The model can be resumed for training as well. Look at python train.py --help for more details. Also, additional less commonly-used hyper-parameters can be set at the bottom of the audio/hparams.py file.


Evaluation

To be updated soon!


Licence and Citation

The software is licensed under the MIT License. Please cite the following paper if you have used this code:

@InProceedings{Hegde_2021_WACV,
    author    = {Hegde, Sindhu B. and Prajwal, K.R. and Mukhopadhyay, Rudrabha and Namboodiri, Vinay P. and Jawahar, C.V.},
    title     = {Visual Speech Enhancement Without a Real Visual Stream},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2021},
    pages     = {1926-1935}
}

Acknowledgements

Parts of the lipsync code has been modified using our Wav2Lip repository. The audio functions and parameters are taken from this TTS repository. We thank the authors for this wonderful code. The code for Face Detection has been taken from the face_alignment repository. We thank the authors for releasing their code and models.

Owner
Sindhu
Masters' by Research (MS) @ CVIT, IIIT Hyderabad
Sindhu
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022