Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Overview

Evaluating the Factual Consistency of Abstractive Text Summarization

Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher

Introduction

Currently used metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and a generated summary. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks:

  1. identify whether sentences remain factually consistent after transformation,
  2. extract a span in the source documents to support the consistency prediction,
  3. extract a span in the summary sentence that is inconsistent if one exists. Transferring this model to summaries generated by several state-of-the art models reveals that this highly scalable approach substantially outperforms previous models, including those trained with strong supervision using standard datasets for natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency.

Paper link: https://arxiv.org/abs/1910.12840

Table of Contents

  1. Updates
  2. Citation
  3. License
  4. Usage
  5. Get Involved

Updates

1/27/2020

Updated manually annotated data files - fixed filepaths in misaligned examples.

Updated model checkpoint files - recomputed evaluation metrics for fixed examples.

Citation

@article{kryscinskiFactCC2019,
  author    = {Wojciech Kry{\'s}ci{\'n}ski and Bryan McCann and Caiming Xiong and Richard Socher},
  title     = {Evaluating the Factual Consistency of Abstractive Text Summarization},
  journal   = {arXiv preprint arXiv:1910.12840},
  year      = {2019},
}

License

The code is released under the BSD-3 License (see LICENSE.txt for details), but we also ask that users respect the following:

This software should not be used to promote or profit from violence, hate, and division, environmental destruction, abuse of human rights, or the destruction of people's physical and mental health.

Usage

Code repository uses Python 3. Prior to running any scripts please make sure to install required Python packages listed in the requirements.txt file.

Example call: pip3 install -r requirements.txt

Training and Evaluation Datasets

Generated training data can be found here.

Manually annotated validation and test data can be found here.

Both generated and manually annotated datasets require pairing with the original CNN/DailyMail articles.

To recreate the datasets follow the instructions:

  1. Download CNN Stories and Daily Mail Stories from https://cs.nyu.edu/~kcho/DMQA/
  2. Create a cnndm directory and unpack downloaded files into the directory
  3. Download and unpack FactCC data (do not rename directory)
  4. Run the pair_data.py script to pair the data with original articles

Example call:

python3 data_pairing/pair_data.py <dir-with-factcc-data> <dir-with-stories>

Generating Data

Synthetic training data can be generated using code available in the data_generation directory.

The data generation script expects the source documents input as one jsonl file, where each source document is embedded in a separate json object. The json object is required to contain an id key which stores an example id (uniqness is not required), and a text field that stores the text of the source document.

Certain transformations rely on NER tagging, thus for best results use source documents with original (proper) casing.

The following claim augmentations (transformations) are available:

  • backtranslation - Paraphrasing claim via backtranslation (requires Google Translate API key; costs apply)
  • pronoun_swap - Swapping a random pronoun in the claim
  • date_swap - Swapping random date/time found in the claim with one present in the source article
  • number_swap - Swapping random number found in the claim with one present in the source article
  • entity_swap - Swapping random entity name found in the claim with one present in the source article
  • negation - Negating meaning of the claim
  • noise - Injecting noise into the claim sentence

For a detailed description of available transformations please refer to Section 3.1 in the paper.

To authenticate with the Google Cloud API follow these instructions.

Example call:

python3 data_generation/create_data.py <source-data-file> [--augmentations list-of-augmentations]

Model Code

FactCC and FactCCX models can be trained or initialized from a checkpoint using code available in the modeling directory.

Quickstart training, fine-tuning, and evaluation scripts are shared in the scripts directory. Before use make sure to update *_PATH variables with appropriate, absolute paths.

To customize training or evaluation settings please refer to the flags in the run.py file.

To utilize Weights&Biases dashboards login to the service using the following command: wandb login <API KEY>.

Trained FactCC model checkpoint can be found here.

Trained FactCCX model checkpoint can be found here.

IMPORTANT: Due to data pre-processing, the first run of training or evaluation code on a large dataset can take up to a few hours before the actual procedure starts.

Running on other data

To run pretrained FactCC or FactCCX models on your data follow the instruction:

  1. Download pre-trained model checkpoint, linked above
  2. Prepare your data in jsonl format. Each example should be a separate json object with id, text, claim keys representing example id, source document, and claim sentence accordingly. Name file as data-dev.jsonl
  3. Update corresponding *-eval.sh script

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022