Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

Overview

NLP_0-project

Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and collaborative group of five, and I mentioned our names based on our initial work division below 😄 .

Here is the outline of our project:

Data collection.

@LeiyuanHuo, jyang130, FanFanShark, xdc1999, gaojiamin1116

  • Based on file data-WRDS-list.csv, write a web-scraping algorithm to download all 10-Ks (html format) these companies filed to the SEC within 2010 to 2022 at Historical EDGAR documents, and rename them data-10K-COMPNAME-Year.html.
  • Parse html files to extract Business and MD&A sections.

Text Processing: feature extraction2

  • Part of Speech Tagging (POS) (mainly this method) to get product name, descriptions. Store these for each company.
  • Named Entity Recognition (NER) (also mainly this method) to get mentioned competitor names. Store these for each company.
  • Product texts: BoW and tf-idf for each company's product(s), and hopefully we have a term-product matrix then.
  • Competitor texts: definitely BoW, as we care about the frequency of being mentioned.
  • ‼️ We also need to combine sector and firm size/market power into competitor texts and re-count.

Text Processing: feature transformation and representation2

  • Term-product matrix: calculate cosine similarity scores for products pairwise; use score threshold to cluster products into similar groups.
  • Term-product matrix: directly apply clustering method (e.g., KMeans clustering) to product vectors, and cluster them.

Econometric Analysis and Hypothesis Testing2

  • Multivariate regression: DV is profitability (e.g., sales, revenue, Tobin's q), IV is competition measures (one from similar product count, one from mentions as competitors), also include relevant control variables.
  • Cross-section portfolios: our competition measures are cross-sectional (one for each year), so we can create long-short portfolios for both measures, and examine stock return effects.

Footnotes

  1. Two papers inspired this project. Citations: Eisdorfer, A., Froot, K., Ozik, G., & Sadka, R. (2021). Competition Links and Stock Returns. The Review of Financial Studies, The Review of financial studies, 2021-12-20. && Hoberg, G., & Phillips, G. (2016). Text-Based Network Industries and Endogenous Product Differentiation. The Journal of Political Economy, 124(5), 1423-1465.

  2. Text processing processes are based on MFIN7036 Lecture_Notes and a review paper. Citation: Marty, T., Vanstone, B., & Hahn, T. (2020). News media analytics in finance: A survey. Accounting and Finance (Parkville), 60(2), 1385-1434. 2 3

Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022