HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

Overview

drawing

PyPI version GitHub Issues Contributions welcome License: MIT Downloads

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision.

The goal is to create a fast, flexible and user-friendly toolkit that can be used to easily develop state-of-the-art computer vision technologies, including systems for Image Classification, Semantic Segmentation, Object Detection, Image Generation, Denoising and much more.

⚠️ HugsVision is currently in beta. ⚠️

Quick installation

HugsVision is constantly evolving. New features, tutorials, and documentation will appear over time. HugsVision can be installed via PyPI to rapidly use the standard library. Moreover, a local installation can be used by those users than want to run experiments and modify/customize the toolkit. HugsVision supports both CPU and GPU computations. For most recipes, however, a GPU is necessary during training. Please note that CUDA must be properly installed to use GPUs.

Anaconda setup

conda create --name HugsVision python=3.6 -y
conda activate HugsVision

More information on managing environments with Anaconda can be found in the conda cheat sheet.

Install via PyPI

Once you have created your Python environment (Python 3.6+) you can simply type:

pip install hugsvision

Install with GitHub

Once you have created your Python environment (Python 3.6+) you can simply type:

git clone https://github.com/qanastek/HugsVision.git
cd HugsVision
pip install -r requirements.txt
pip install --editable .

Any modification made to the hugsvision package will be automatically interpreted as we installed it with the --editable flag.

Example Usage

Let's train a binary classifier that can distinguish people with or without Pneumothorax thanks to their radiography.

Steps:

  1. Move to the recipe directory cd recipes/pneumothorax/binary_classification/
  2. Download the dataset here ~779 MB.
  3. Transform the dataset into a directory based one, thanks to the process.py script.
  4. Train the model: python train_example_vit.py --imgs="./pneumothorax_binary_classification_task_data/" --name="pneumo_model_vit" --epochs=1
  5. Rename <MODEL_PATH>/config.json to <MODEL_PATH>/preprocessor_config.json in my case, the model is situated at the output path like ./out/MYVITMODEL/1_2021-08-10-00-53-58/model/
  6. Make a prediction: python predict.py --img="42.png" --path="./out/MYVITMODEL/1_2021-08-10-00-53-58/model/"

Models recipes

You can find all the currently available models or tasks under the recipes/ folder.

Training a Transformer Image Classifier to help radiologists detect Pneumothorax cases: A demonstration of how to train a Image Classifier Transformer model that can distinguish people with or without Pneumothorax thanks to their radiography with HugsVision.
Training a End-To-End Object Detection with Transformers to detect blood cells: A demonstration of how to train a E2E Object Detection Transformer model which can detect and identify blood cells with HugsVision.
Training a Transformer Image Classifier to help endoscopists: A demonstration of how to train a Image Classifier Transformer model that can help endoscopists to automate detection of various anatomical landmarks, phatological findings or endoscopic procedures in the gastrointestinal tract with HugsVision.
Training and using a TorchVision Image Classifier in 5 min to identify skin cancer: A fast and easy tutorial to train a TorchVision Image Classifier that can help dermatologist in their identification procedures Melanoma cases with HugsVision and HAM10000 dataset.

HuggingFace Spaces

You can try some of the models or tasks on HuggingFace thanks to theirs amazing spaces :

Model architectures

All the model checkpoints provided by 🤗 Transformers and compatible with our tasks can be seamlessly integrated from the huggingface.co model hub where they are uploaded directly by users and organizations.

Before starting implementing, please check if your model has an implementation in PyTorch by refering to this table.

🤗 Transformers currently provides the following architectures for Computer Vision:

  1. ViT (from Google Research, Brain Team) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
  2. DeiT (from Facebook AI and Sorbonne University) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
  3. BEiT (from Microsoft Research) released with the paper BEIT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong and Furu Wei.
  4. DETR (from Facebook AI) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko.

Build PyPi package

Build: python setup.py sdist bdist_wheel

Upload: twine upload dist/*

Citation

If you want to cite the tool you can use this:

@misc{HugsVision,
  title={HugsVision},
  author={Yanis Labrak},
  publisher={GitHub},
  journal={GitHub repository},
  howpublished={\url{https://github.com/qanastek/HugsVision}},
  year={2021}
}
Owner
Labrak Yanis
👨🏻‍🎓 Student in Master of Science in Computer Science, Avignon University 🇫🇷 🏛 Research Scientist - Machine Learning in Healthcare
Labrak Yanis
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022