这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Overview

Time Series Research with Torch

这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度:

# 建立线性层 TensorFlow vs PyTorch
tf.keras.Dense(units=output_size) # 不需要提前指定输入维度
torch.nn.Linear(in_features=input_size, out_features=output_size) # 需要提前指定输入维度

这对于单一模型来说不会存在问题,我们可以对每个模型作针对性的特征工程,然后将数据输入即可。但在一个API统一的框架中可能会导致模型复用及其困难,因为用户并不知道自己调用的模型中封装了什么特征工程,所以也无法预知网络最底层的输入维度。

PyTorchTS是一位大佬根据GluonTS框架实现的基于PyTorch的时间序列预测框架,其数据加载、转换和模型的测试都非常漂亮,但由于PyTorch的这个特性,导致用户在调用时需要指定input_size参数:

# PyTorchTS框架中DeepAR模型的调用
estimator = DeepAREstimator(
    distr_output=ImplicitQuantileOutput(output_domain="Positive"),
    cell_type='GRU',
    input_size=62, # 输入维度指定, 且只能指定为62, 但对没有深入了解框架的用户意义不明
    num_cells=64,
    num_layers=3,
    ...)

这个input_size=62并不是指用户输入的时间序列的维度,而是经过多个特征构造和转换后到达RNN单元的Tensor维度,这就需要用户提前在草稿纸上推导出变换后的数据维度,并当做评估器的输入,然而这不是一件容易的事情(复杂的多项式关系-_-||),并且也丢失了神经网络的端到端的黑箱特性。

因此,希望能够实现一种更黑箱的框架,并做一些model和trick上的研究,这就是这个项目建立的原因啦。

数据加载

项目中的Benchmark数据来源于multivariate-time-series-data,并额外添加了人工生成的较为简单的时间序列,用于检测模型的正确性

Dataset Dimension Frequency Start Date
Electricity 321 H 2012-01-01 00:00:00
Exchange Rate 8 B 1990-01-01 00:00:00
Solar Energy 137 10min 2006-01-01 00:00:00
Traffic 862 H 2015-01-01 00:00:00
Artificial 1 H 2013-11-28 18:00:00

time-series data show

Owner
Chi Zhang
keep learning!
Chi Zhang
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022