Defending graph neural networks against adversarial attacks (NeurIPS 2020)

Overview

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks

Authors: Xiang Zhang ([email protected]), Marinka Zitnik ([email protected])

Project website

Overview

This repository contains python codes and datasets necessary to run the GNNGuard algorithm. GNNGuard is a general defense approach against a variety of poisoning adversarial attacks that perturb the discrete graph structure. GNNGuard can be straightforwardly incorporated into any GNN models to prevent the misclassification caused by poisoning adversarial attacks on graphs. Please see our paper for more details on the algorithm.

Key Idea of GNNGuard

Deep learning methods for graphs achieve remarkable performance on many tasks. However, despite the proliferation of such methods and their success, recent findings indicate that small, unnoticeable perturbations of graph structure can catastrophically reduce performance of even the strongest and most popular Graph Neural Networks (GNNs). By integrating with the proposed GNNGuard, the GNN classifier can correctly classify the target node even under strong adversarial attacks.

The key idea of GNNGuard is to detect and quantify the relationship between the graph structure and node features, if one exists, and then exploit that relationship to mitigate negative effects of the attack. GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes. In specific, instead of the neural message passing of typical GNN (shown as A), GNNGuard (B) controls the message stream such as blocking the message from irrelevent neighbors but strengthening messages from highly-related ones. Importantly, we are the first model that can defend heterophily graphs (\eg, with structural equivalence) while all the existing defenders only considering homophily graphs.

Running the code

The GNNGuard is evluated under three typical adversarial attacks including Direct Targeted Attack (Nettack-Di), Influence Targeted Attack (Nettack-In), and Non-Targeted Attack (Mettack). In GNNGuard folder, the Nettack-Di.py, Nettack-In.py, and Mettack.py corresponding to the three adversarial attacks.

For example, to check the performance of GCN without defense under direct targeted attack, run the following code:

python Nettack-Di.py --dataset Cora  --modelname GCN --GNNGuard False

Turn on the GNNGuard defense, run

python Nettack-Di.py --dataset Cora  --modelname GCN --GNNGuard True

Note: Please uncomment the defense models (Line 144 for Nettack-Di.py) to test different defense models.

Citing

If you find GNNGuard useful for your research, please consider citing this paper:

@inproceedings{zhang2020gnnguard,
title     = {GNNGuard: Defending Graph Neural Networks against Adversarial Attacks},
author    = {Zhang, Xiang and Zitnik, Marinka},
booktitle = {NeurIPS},
year      = {2020}
}

Requirements

GNNGuard is tested to work under Python >=3.5.

Recent versions of Pytorch, torch-geometric, numpy, and scipy are required. All the required basic packages can be installed using the following command: ''' pip install -r requirements.txt ''' Note: For toch-geometric and the related dependices (e.g., cluster, scatter, sparse), the higher version may work but haven't been tested yet.

Install DeepRobust

During the evaluation, the adversarial attacks on graph are performed by DeepRobust from MSU, please install it by

git clone https://github.com/DSE-MSU/DeepRobust.git
cd DeepRobust
python setup.py install
  1. If you have trouble in installing DeepRobust, please try to replace the provided 'defense/setup.py' to replace the original DeepRobust-master/setup.py and manully reinstall it by
python setup.py install
  1. We extend the original DeepRobust from single GCN to multiplye GNN variants including GAT, GIN, Jumping Knowledge, and GCN-SAINT. After installing DeepRobust, please replace the origininal folder DeepRobust-master/deeprobust/graph/defense by the defense folder that provided in our repository!

  2. To better plugin GNNGuard to geometric codes, we slightly revised some functions in geometric. Please use the three files under our provided nn/conv/ to replace the corresponding files in the installed geometric folder (for example, the folder path could be /home/username/.local/lib/python3.5/site-packages/torch_geometric/nn/conv/).

Note: 1). Don't forget to backup all the original files when you replacing anything, in case you need them at other places! 2). Please install the corresponding CUDA versions if you are using GPU.

Datasets

Here we provide the datasets (including Cora, Citeseer, ogbn-arxiv, and DP) used in GNNGuard paper.

The ogbn-arxiv dataset can be easily access by python codes:

from ogb.nodeproppred import PygNodePropPredDataset
dataset = PygNodePropPredDataset(name = 'ogbn-arxiv')

More details about ogbn-arxiv dataset can be found here.

Find more details about Disease Pathway dataset at here.

For graphs with structural roles, a prominent type of heterophily, we calculate the nodes' similarity using graphlet degree vector instead of node embedding. The graphlet degree vector is generated/counted based on the Orbit Counting Algorithm (Orca).

Miscellaneous

Please send any questions you might have about the code and/or the algorithm to [email protected].

License

GNNGuard is licensed under the MIT License.

Owner
Zitnik Lab @ Harvard
Machine Learning for Medicine and Science
Zitnik Lab @ Harvard
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022