Pytorch implementation of MaskFlownet

Overview

MaskFlownet-Pytorch

Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet).

Tested with:

  • PyTorch 1.5.0
  • CUDA 10.1

Install

The correlation package must be installed first:

cd model/correlation_package
python setup.py install

Inference

Right now, I implemented the inference script for KITTI 2012/2015, MPI Sintel and FlyingChairs.

python predict.py CONFIG -c CHECKPOINT --dataset_cfg DATASET -f ROOT_FOLDER [-b BATCH_SIZE]

For example:

  • python predict.py MaskFlownet.yaml -c 5adNov03-0005_1000000.pth --dataset_cfg sintel.yaml -f ./SINTEL -b 4
  • python predict.py MaskFlownet.yaml -c 8caNov12-1532_300000.pth --dataset_cfg kitti.yaml -f ./KITTI -b 4
  • python predict.py MaskFlownet_S.yaml -c 771Sep25-0735_500000.pth --dataset_cfg chairs.yaml -f ./FLYINGCHAIRS -b 4
  • python predict.py MaskFlownet_S.yaml -c dbbSep30-1206_1000000.pth --dataset_cfg sintel.yaml -f ./SINTEL -b 4

Differences with the original implementation

The results are slightly different from the original implementation:

Checkpoint Network Implementation KITTI2012 KITTI2015 Sintel Clean Sintel Final FlyingChairs
771Sep25 MaskFlownet_S

Original AEPE:
PyTorch AEPE:

4.12
4.18

11.52
11.82

3.38
3.38

4.71
4.70

1.84
1.83

dbbSep30 MaskFlownet_S

Original AEPE:
PyTorch AEPE:

1.27
1.28

1.92
1.93

2.76
2.78

3.29
3.32

2.36
2.36

5adNov03 MaskFlownet

Original AEPE:
PyTorch AEPE:

1.16
1.18

1.66
1.68

2.58
2.59

3.14
3.17

2.23
2.23

8caNov12 MaskFlownet

Original AEPE:
PyTorch AEPE:

0.82
0.82

1.38
1.38

4.34
4.40

5.27
5.33

4.01
3.99

Examples

KITTI Original implementation:

original_visualization

KITTI This implementation:

this_visualization

Sintel Original implementation:

original_visualization

Sintel This implementation:

this_visualization

FlyingChairs Original implementation:

original_visualization

FlyingChairs This implementation:

this_visualization

Notes

If you use my implementation for training, it might happen that you encounter this error:

CUDA error: an illegal memory access was encountered

This is due to a bug in the torchvision implementation of deformable convolutions. (still present in version 0.7.0)

To solve it, you need to use the nightly version of torchvision.

Acknowledgment

Original MXNet implementation: here

correlation_package was taken from flownet2

Owner
Daniele Cattaneo
PostDoc at University of Freiburg. Focus on deep learning for vision-based and LiDAR-based localization, self-driving cars, and sensor fusion.
Daniele Cattaneo
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022