Chinese clinical named entity recognition using pre-trained BERT model

Related tags

Deep Learningbertcner
Overview

Chinese clinical named entity recognition (CNER) using pre-trained BERT model

Introduction

Code for paper Chinese clinical named entity recognition with variant neural structures based on BERT methods

Paper url: https://www.sciencedirect.com/science/article/pii/S1532046420300502

We pre-trained BERT model to improve the performance of Chinese CNER. Different layers such as Long Short-Term Memory (LSTM) and Conditional Random Field (CRF) were used to extract the text features and decode the predicted tags respectively. And we also proposed a new strategy to incorporate dictionary features into the model. Radical features of Chinese characters were also used to improve the model performance.

Model structure

Model Structure

Usage

Pre-trained models

For replication, we uploaded two models in Baidu Netdisk.

Link: https://pan.baidu.com/s/1obzG6OSbu77duhusWg2xmQ Code: k53q

Examples

To replicate the result of CCKS-2018 dataset

python main.py \
--data_dir=data/ccks_2018 \
--bert_model=model/  \
--output_dir=./output  \
--terminology_dicts_path="{'medicine':'data/ccks_2018/drug_dict.txt','surgery':'data/ccks_2018/surgery_dict.txt'}" \
--radical_dict_path data/radical_dict.txt \
--constant=0 \
--add_radical_or_not=True \
--radical_one_hot=False \
--radical_emb_dim=20 \
--max_seq_length=480 \
--do_train=True \
--do_eval=True \
--train_batch_size=6 \
--eval_batch_size=4 \
--hidden_dim=64 \
--learning_rate=5e-5 \
--num_train_epochs=5 \
--gpu_id=3 \

Results

CCKS-2018 dataset

Method P R F1
FT-BERT+BiLSTM+CRF 88.57 89.02 88.80
+dictionary 88.58 89.17 88.87
+radical(one-hot encoding) 88.51 89.39 88.95
+radical(random embedding) 89.24 89.11 89.17
+dictionary +radical 89.42 89.22 89.32
ensemble 89.59 89.54 89.56
Team Name Method F1
Yang and Huang (2018) CRF(feature-rich + rule) 89.26
heiheihahei LSTM-CRF(ensemble) 88.92
Luo et al.(2018) LSTM-CRF(ensemble) 88.63
dous12 - 88.37
chengachengcheng - 88.30
NUBT-IBDL - 87.62
Our FT-BERT+BiLSTM +CRF+Dictionary(ensemble) 89.56

CCKS-2017 dataset

Method P R F1
FT-BERT+BiLSTM+CRF 91.64 90.98 91.31
+dictionary 91.49 90.97 91.23
+radical(one-hot encoding) 91.83 90.80 91.35
+radical(random embedding) 92.07 90.77 91.42
+dictionary+radical 91.76 90.88 91.32
ensemble 92.06 91.15 91.60
Team Name Method F1
Qiu et al. (2018b) RD-CNN-CRF 91.32
Wang et al. (2019) BiLSTM-CRF+Dictionary 91.24
Hu et al. (2017) BiLSTM-FEA(ensemble) 91.03
Zhang et al. (2018) BiLSTM-CRF(mt+att+ms) 90.52
Xia and Wang (2017) BiLSTM-CRF(ensemble) 89.88
Ouyang et al. (2017) BiRNN-CRF 88.85
Li et al. (2017) BiLSTM-CRF(specialized +lexicons) 87.95
Our FT-BERT+BiLSTM +CRF+Dictionary(ensemble) 91.60
Owner
Xiangyang Li
Xiangyang Li
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022