NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

Related tags

Deep LearningNeuroLKH
Overview

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang. NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem, 35th Conference on Neural Information Processing Systems (NeurIPS), 2021. [pdf]

Please cite our paper if this code is useful for your work.

@inproceedings{xin2021neurolkh,
    author = {Xin, Liang and Song, Wen and Cao, Zhiguang and Zhang, Jie},
    booktitle = {Advances in Neural Information Processing Systems},
    title = {NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem},
    volume = {34},
    year = {2021}
}

Quick start

To connect the deep learning model Sparse Graph Network (Python) and the Lin-Kernighan-Helsgaun Heuristic (C Programming), we implement two versions.

  • subprocess version. This version requires writting and reading data files to connect the two programming languages. To compile and test with our pretrained models for TSP instances with 100 nodes:
make
python data_generate.py -test
python test.py --dataset test/100.pkl --model_path pretrained/neurolkh.pt --n_samples 1000 --lkh_trials 1000 --neurolkh_trials 1000
  • Swig (http://www.swig.org) version. The C code is wrapped for Python. To compile and test with our pretained models for TSP instances with 100 nodes:
bash setup.sh
python data_generate.py -test
python swig_test.py --dataset test/100.pkl --model_path pretrained/neurolkh.pt --n_samples 1000 --lkh_trials 1000 --neurolkh_trials 1000

Usage

Generate the training dataset

As the training for edge scores requires the edge labels, generating the training dataset will take a relatively long time (a couple of days).

python data_generate.py -train

Train the NeuroLKH Model

To train for the node penalties in the Sparse Graph Network, swig is required and the subprocess version is currently not supported. With one RTX 2080Ti GPU, the model converges in approximately 4 days.

CUDA_VISIBLE_DEVICES="0" python train.py --file_path train --eval_file_path val --eval_batch_size=100 --save_dir=saved/tsp_neurolkh --learning_rate=0.0001

Finetune the node decoder for large sizes

The finetuning process takes less than 1 minute for each size.

CUDA_VISIBLE_DEVICES="0" python finetune_node.py

Testing

Test with the pretrained model on TSP with 500 nodes:

python test.py --dataset test/500.pkl --model_path pretrained/neurolkh.pt --n_samples 1000 --lkh_trials 1000 --neurolkh_trials 1000

We test on the TSPLIB instances with two NeuroLKH Models, NeuroLKH trained with uniformly distributed TSP instances and NeuroLKH_M trained with uniform, clustered and uniform-clustered instances (please refer to the paper for details).

python tsplib_test.py

Other Routing Problems (CVRP, PDP, CVRPTW)

Testing with pretrained models

test for CVRP with 100 customers, PDP and CVRPTW with 40 customers

# Capacitated Vehicle Routing Problem (CVRP)
python CVRPdata_generate.py -test
python CVRP_test.py --dataset CVRP_test/cvrp_100.pkl --model_path pretrained/cvrp_neurolkh.pt --n_samples 1000 --lkh_trials 10000 --neurolkh_trials 10000
# Pickup and Delivery Problem (PDP)
python PDPdata_generate.py -test
python PDP_test.py --dataset PDP_test/pdp_40.pkl --model_path pretrained/pdp_neurolkh.pt --n_samples 1000 --lkh_trials 10000 --neurolkh_trials 10000
# CVRP with Time Windows (CVRPTW)
python CVRPTWdata_generate.py -test
python CVRPTw_test.py --dataset CVRPTW_test/cvrptw_40.pkl --model_path pretrained/cvrptw_neurolkh.pt --n_samples 1000 --lkh_trials 10000 --neurolkh_trials 10000

Training

train for CVRP with 100-500 customers, PDP and CVRPTW with 40-200 customers

# Capacitated Vehicle Routing Problem (CVRP)
python CVRPdata_generate.py -train
CUDA_VISIBLE_DEVICES="0" python CVRP_train.py --save_dir=saved/cvrp_neurolkh
# Pickup and Delivery Problem (PDP)
python PDPdata_generate.py -train
CUDA_VISIBLE_DEVICES="0" python PDP_train.py --save_dir=saved/pdp_neurolkh
# CVRP with Time Windows (CVRPTW)
python CVRPTWdata_generate.py -train
CUDA_VISIBLE_DEVICES="0" python CVRPTW_train.py --save_dir=saved/cvrptw_neurolkh

Dependencies

  • Python >= 3.6
  • Pytorch
  • sklearn
  • Numpy
  • tqdm
  • (Swig, optional)

Acknowledgements

Owner
xinliangedu
xinliangedu
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022