NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

Related tags

Deep LearningNeuroLKH
Overview

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang. NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem, 35th Conference on Neural Information Processing Systems (NeurIPS), 2021. [pdf]

Please cite our paper if this code is useful for your work.

@inproceedings{xin2021neurolkh,
    author = {Xin, Liang and Song, Wen and Cao, Zhiguang and Zhang, Jie},
    booktitle = {Advances in Neural Information Processing Systems},
    title = {NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem},
    volume = {34},
    year = {2021}
}

Quick start

To connect the deep learning model Sparse Graph Network (Python) and the Lin-Kernighan-Helsgaun Heuristic (C Programming), we implement two versions.

  • subprocess version. This version requires writting and reading data files to connect the two programming languages. To compile and test with our pretrained models for TSP instances with 100 nodes:
make
python data_generate.py -test
python test.py --dataset test/100.pkl --model_path pretrained/neurolkh.pt --n_samples 1000 --lkh_trials 1000 --neurolkh_trials 1000
  • Swig (http://www.swig.org) version. The C code is wrapped for Python. To compile and test with our pretained models for TSP instances with 100 nodes:
bash setup.sh
python data_generate.py -test
python swig_test.py --dataset test/100.pkl --model_path pretrained/neurolkh.pt --n_samples 1000 --lkh_trials 1000 --neurolkh_trials 1000

Usage

Generate the training dataset

As the training for edge scores requires the edge labels, generating the training dataset will take a relatively long time (a couple of days).

python data_generate.py -train

Train the NeuroLKH Model

To train for the node penalties in the Sparse Graph Network, swig is required and the subprocess version is currently not supported. With one RTX 2080Ti GPU, the model converges in approximately 4 days.

CUDA_VISIBLE_DEVICES="0" python train.py --file_path train --eval_file_path val --eval_batch_size=100 --save_dir=saved/tsp_neurolkh --learning_rate=0.0001

Finetune the node decoder for large sizes

The finetuning process takes less than 1 minute for each size.

CUDA_VISIBLE_DEVICES="0" python finetune_node.py

Testing

Test with the pretrained model on TSP with 500 nodes:

python test.py --dataset test/500.pkl --model_path pretrained/neurolkh.pt --n_samples 1000 --lkh_trials 1000 --neurolkh_trials 1000

We test on the TSPLIB instances with two NeuroLKH Models, NeuroLKH trained with uniformly distributed TSP instances and NeuroLKH_M trained with uniform, clustered and uniform-clustered instances (please refer to the paper for details).

python tsplib_test.py

Other Routing Problems (CVRP, PDP, CVRPTW)

Testing with pretrained models

test for CVRP with 100 customers, PDP and CVRPTW with 40 customers

# Capacitated Vehicle Routing Problem (CVRP)
python CVRPdata_generate.py -test
python CVRP_test.py --dataset CVRP_test/cvrp_100.pkl --model_path pretrained/cvrp_neurolkh.pt --n_samples 1000 --lkh_trials 10000 --neurolkh_trials 10000
# Pickup and Delivery Problem (PDP)
python PDPdata_generate.py -test
python PDP_test.py --dataset PDP_test/pdp_40.pkl --model_path pretrained/pdp_neurolkh.pt --n_samples 1000 --lkh_trials 10000 --neurolkh_trials 10000
# CVRP with Time Windows (CVRPTW)
python CVRPTWdata_generate.py -test
python CVRPTw_test.py --dataset CVRPTW_test/cvrptw_40.pkl --model_path pretrained/cvrptw_neurolkh.pt --n_samples 1000 --lkh_trials 10000 --neurolkh_trials 10000

Training

train for CVRP with 100-500 customers, PDP and CVRPTW with 40-200 customers

# Capacitated Vehicle Routing Problem (CVRP)
python CVRPdata_generate.py -train
CUDA_VISIBLE_DEVICES="0" python CVRP_train.py --save_dir=saved/cvrp_neurolkh
# Pickup and Delivery Problem (PDP)
python PDPdata_generate.py -train
CUDA_VISIBLE_DEVICES="0" python PDP_train.py --save_dir=saved/pdp_neurolkh
# CVRP with Time Windows (CVRPTW)
python CVRPTWdata_generate.py -train
CUDA_VISIBLE_DEVICES="0" python CVRPTW_train.py --save_dir=saved/cvrptw_neurolkh

Dependencies

  • Python >= 3.6
  • Pytorch
  • sklearn
  • Numpy
  • tqdm
  • (Swig, optional)

Acknowledgements

Owner
xinliangedu
xinliangedu
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022