Final report with code for KAIST Course KSE 801.

Overview

🧮 KSE 801 Final Report with Code

This is the final report with code for KAIST course KSE 801.

Author: Chuanbo Hua, Federico Berto.

💡 Introduction About the OSC

Orthogonal collocation is a method for the numerical solution of partial differential equations. It uses collocation at the zeros of some orthogonal polynomials to transform the partial differential equation (PDE) to a set of ordinary differential equations (ODEs). The ODEs can then be solved by any method. It has been shown that it is usually advantageous to choose the collocation points as the zeros of the corresponding Jacobi polynomial (independent of the PDE system) [1].

Orthogonal collocation method was famous at 1970s, mainly developed by BA Finlayson [2]. Which is a powerful collocation tool in solving partial differential equations and ordinary differential equations.

Orthogonal collocation method works for more than one variable, but here we only choose one variable cases, since this is more simple to understand and most widely used.

💡 Introduction About the GNN

You can find more details from the jupter notebook within gnn-notebook folder. We include the dataset init, model training and test in the folder.

Reminder: for dataset, we provide another repository for dataset generator. Please refer to repo: https://github.com/DiffEqML/pde-dataset-generator.

🏷 Features

  • Turoritals. We provide several examples, including linear and nonlinear problems to help you to understand how to use it and the performance of this model.
  • Algorithm Explanation. We provide a document to in detail explain how this alogirthm works by example, which we think it's easier to get. For more detail, please refer to Algorithm section.

⚙️ Requirement

Python Version: 3.6 or later
Python Package: numpy, matplotlib, jupyter-notebook/jupyter-lab, dgl, torch

🔧 Structure

  • src: source code for OSC algorithm.
  • fig: algorithm output figures for readme
  • osc-notebook: tutorial jupyter notebooks about our osc method
  • gnn-notebook: tutorial jupyter notebooks about graph neural network
  • script: some training and tesing script of the graph neural network

🔦 How to use

Step 1. Download or Clone this repository.

Step 2. Refer to osc-notebook/example.ipynb, it will introduce how to use this model in detail by examples. Main process would be

  1. collocation1d(): generate collocation points.
  2. generator1d(): generate algebra equations from PDEs to be solved.
  3. numpy.linalg.solve(): solve the algebra equations to get polynomial result,
  4. polynomial1d(): generate simulation value to check the loss.

Step 3. Refer to notebooks under gnn-notebook to get the idea of training graph model.

📈 Examples

One variable, linear, 3 order Loss: <1e-4

One variable, linear, 4 order Loss: 2.2586

One variable, nonlinear Loss: 0.0447

2D PDEs Simulation

Dam Breaking Simulation

📜 Algorithm

Here we are going to simply introduce how 1D OSC works by example. Original pdf please refer to Introduction.pdf in this repository.

📚 References

[1] Orthogonal collocation. (2018, January 30). In Wikipedia. https://en.wikipedia.org/wiki/Orthogonal_collocation.

[2] Carey, G. F., and Bruce A. Finlayson. "Orthogonal collocation on finite elements." Chemical Engineering Science 30.5-6 (1975): 587-596.

Owner
Chuanbo HUA
HIT, POSTECH, KAIST.
Chuanbo HUA
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022