Relevance Vector Machine implementation using the scikit-learn API.

Overview

scikit-rvm

https://travis-ci.org/JamesRitchie/scikit-rvm.svg?branch=master https://coveralls.io/repos/JamesRitchie/scikit-rvm/badge.svg?branch=master&service=github

scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API.

Quickstart

With NumPy, SciPy and scikit-learn available in your environment, install with:

pip install https://github.com/JamesRitchie/scikit-rvm/archive/master.zip

Regression is done with the RVR class:

>>> from skrvm import RVR
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5 ]
>>> clf = RVR(kernel='linear')
>>> clf.fit(X, y)
RVR(alpha=1e-06, beta=1e-06, beta_fixed=False, bias_used=True, coef0=0.0,
coef1=None, degree=3, kernel='linear', n_iter=3000,
threshold_alpha=1000000000.0, tol=0.001, verbose=False)
>>> clf.predict([[1, 1]])
array([ 1.49995187])

Classification is done with the RVC class:

>>> from skrvm import RVC
>>> from sklearn.datasets import load_iris
>>> clf = RVC()
>>> clf.fit(iris.data, iris.target)
RVC(alpha=1e-06, beta=1e-06, beta_fixed=False, bias_used=True, coef0=0.0,
coef1=None, degree=3, kernel='rbf', n_iter=3000, n_iter_posterior=50,
threshold_alpha=1000000000.0, tol=0.001, verbose=False)
>>> clf.score(iris.data, iris.target)
0.97999999999999998

Theory

The RVM is a sparse Bayesian analogue to the Support Vector Machine, with a number of advantages:

  • It provides probabilistic estimates, as opposed to the SVM's point estimates.
  • Typically provides a sparser solution than the SVM, which tends to have the number of support vectors grow linearly with the size of the training set.
  • Does not need a complexity parameter to be selected in order to avoid overfitting.

However it is more expensive to train than the SVM, although prediction is faster and no cross-validation runs are required.

The RVM's original creator Mike Tipping provides a selection of papers offering detailed insight into the formulation of the RVM (and sparse Bayesian learning in general) on a dedicated page, along with a Matlab implementation.

Most of this implementation was written working from Section 7.2 of Christopher M. Bishops's Pattern Recognition and Machine Learning.

Contributors

Future Improvements

  • Implement the fast Sequential Sparse Bayesian Learning Algorithm outlined in Section 7.2.3 of Pattern Recognition and Machine Learning
  • Handle ill-conditioning errors more gracefully.
  • Implement more kernel choices.
  • Create more detailed examples with IPython notebooks.
Owner
James Ritchie
Postgraduate research student in machine learning
James Ritchie
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
Uber Open Source 1.6k Dec 31, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
Pragmatic AI Labs 421 Dec 31, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022