This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Overview

Interpretable Machine Learning with Python

Interpretable Machine Learning with Pythone

This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Learn to build interpretable high-performance models with hands-on real-world examples

What is this book about?

Do you want to understand your models and mitigate the risks associated with poor predictions using practical machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you overcome these challenges, using interpretation methods to build fairer and safer ML models.

This book covers the following exciting features:

  • Recognize the importance of interpretability in business
  • Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes
  • Become well-versed in interpreting models with model-agnostic methods
  • Visualize how an image classifier works and what it learns
  • Understand how to mitigate the influence of bias in datasets

If you feel this book is for you, get your copy today!

https://www.packtpub.com/

Instructions and Navigations

All of the code is organized into folders. For example, Chapter02.

The code will look like the following:

base_classifier = KerasClassifier(model=base_model,\
                                  clip_values=(min_, max_))
y_test_mdsample_prob = np.max(y_test_prob[sampl_md_idxs],\
                                                       axis=1)
y_test_smsample_prob = np.max(y_test_prob[sampl_sm_idxs],\
                                                       axis=1)

Following is what you need for this book: This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.

With the following software and hardware list you can run all code files present in the book (Chapter 1-14).

Software and Hardware List

You can install the software required in any operating system by first installing Jupyter Notebook or Jupyter Lab with the most recent version of Python, or install Anaconda which can install everything at once. While hardware requirements for Jupyter are relatively modest, we recommend a machine with at least 4 cores of 2Ghz and 8Gb of RAM.

Alternatively, to installing the software locally, you can run the code in the cloud using Google Colab or another cloud notebook service.

Either way, the following packages are required to run the code in all the chapters (Google Colab has all the packages denoted with a ^):

Chapter Software required OS required
1 - 13 ^ Python 3.6+ Windows, Mac OS X, and Linux (Any)
1 - 13 ^ matplotlib 3.2.2+ Windows, Mac OS X, and Linux (Any)
1 - 13 ^ scikit-learn 0.22.2+ Windows, Mac OS X, and Linux (Any)
1 - 12 ^ pandas 1.1.5+ Windows, Mac OS X, and Linux (Any)
2 - 13 machine-learning-datasets 0.01.16+ Windows, Mac OS X, and Linux (Any)
2 - 13 ^ numpy 1.19.5+ Windows, Mac OS X, and Linux (Any)
3 - 13 ^ seaborn 0.11.1+ Windows, Mac OS X, and Linux (Any)
3 - 13 ^ tensorflow 2.4.1+ Windows, Mac OS X, and Linux (Any)
5 - 12 shap 0.38.1+ Windows, Mac OS X, and Linux (Any)
1, 5, 10, 12 ^ scipy 1.4.1+ Windows, Mac OS X, and Linux (Any)
5, 10-12 ^ xgboost 0.90+ Windows, Mac OS X, and Linux (Any)
6, 11, 12 ^ lightgbm 2.2.3+ Windows, Mac OS X, and Linux (Any)
7 - 9 alibi 0.5.5+ Windows, Mac OS X, and Linux (Any)
10 - 13 ^ tqdm 4.41.1+ Windows, Mac OS X, and Linux (Any)
2, 9 ^ statsmodels 0.10.2+ Windows, Mac OS X, and Linux (Any)
3, 5 rulefit 0.3.1+ Windows, Mac OS X, and Linux (Any)
6, 8 lime 0.2.0.1+ Windows, Mac OS X, and Linux (Any)
7, 12 catboost 0.24.4+ Windows, Mac OS X, and Linux (Any)
8, 9 ^ Keras 2.4.3+ Windows, Mac OS X, and Linux (Any)
11, 12 ^ pydot 1.3.0+ Windows, Mac OS X, and Linux (Any)
11, 12 xai 0.0.4+ Windows, Mac OS X, and Linux (Any)
1 ^ beautifulsoup4 4.6.3+ Windows, Mac OS X, and Linux (Any)
1 ^ requests 2.23.0+ Windows, Mac OS X, and Linux (Any)
3 cvae 0.0.3+ Windows, Mac OS X, and Linux (Any)
3 interpret 0.2.2+ Windows, Mac OS X, and Linux (Any)
3 ^ six 1.15.0+ Windows, Mac OS X, and Linux (Any)
3 skope-rules 1.0.1+ Windows, Mac OS X, and Linux (Any)
4 PDPbox 0.2.0+ Windows, Mac OS X, and Linux (Any)
4 pycebox 0.0.1+ Windows, Mac OS X, and Linux (Any)
5 alepython 0.1+ Windows, Mac OS X, and Linux (Any)
5 tensorflow-docs 0.0.02+ Windows, Mac OS X, and Linux (Any)
6 ^ nltk 3.2.5+ Windows, Mac OS X, and Linux (Any)
7 witwidget 1.7.0+ Windows, Mac OS X, and Linux (Any)
8 ^ opencv-python 4.1.2.30+ Windows, Mac OS X, and Linux (Any)
8 ^ scikit-image 0.16.2+ Windows, Mac OS X, and Linux (Any)
8 tf-explain 0.2.1+ Windows, Mac OS X, and Linux (Any)
8 tf-keras-vis 0.5.5+ Windows, Mac OS X, and Linux (Any)
9 SALib 1.3.12+ Windows, Mac OS X, and Linux (Any)
9 distython 0.0.3+ Windows, Mac OS X, and Linux (Any)
10 ^ mlxtend 0.14.0+ Windows, Mac OS X, and Linux (Any)
10 sklearn-genetic 0.3.0+ Windows, Mac OS X, and Linux (Any)
11 aif360==0.3.0 Windows, Mac OS X, and Linux (Any)
11 BlackBoxAuditing==0.1.54 Windows, Mac OS X, and Linux (Any)
11 dowhy 0.5.1+ Windows, Mac OS X, and Linux (Any)
11 econml 0.9.0+ Windows, Mac OS X, and Linux (Any)
11 ^ networkx 2.5+ Windows, Mac OS X, and Linux (Any)
12 bayesian-optimization 1.2.0+ Windows, Mac OS X, and Linux (Any)
12 ^ graphviz 0.10.1+ Windows, Mac OS X, and Linux (Any)
12 tensorflow-lattice 2.0.7+ Windows, Mac OS X, and Linux (Any)
13 adversarial-robustness-toolbox 1.5.0+ Windows, Mac OS X, and Linux (Any)

NOTE: the library machine-learning-datasets is the official name of what in the book is referred to as mldatasets. Due to naming conflicts, it had to be changed.

The exact versions of each library, as tested, can be found in the requirements.txt file and installed like this should you have a dedicated environment for them:

> pip install -r requirements.txt

You might get some conflicts specifically with libraries cvae, alepython, pdpbox and xai. If this is the case, try:

> pip install --no-deps -r requirements.txt

Alternatively, you can install libraries one chapter at a time inside of a local Jupyter environment using cells with !pip install or run all the code in Google Colab with the following links:

Remember to make sure you click on the menu item "File > Save a copy in Drive" as soon you open each link to ensure that your notebook is saved as you run it. Also, notebooks denoted with plus sign (+) are relatively compute-intensive, and will take an extremely long time to run on Google Colab but if you must go to "Runtime > Change runtime type" and select "High-RAM" for runtime shape. Otherwise, a better cloud enviornment or local environment is preferable.

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it.

Summary

The book does much more than explain technical topics, but here's a summary of the chapters:

Chapters topics

Related products

Get to Know the Authors

Serg Masís has been at the confluence of the internet, application development, and analytics for the last two decades. Currently, he's a Climate and Agronomic Data Scientist at Syngenta, a leading agribusiness company with a mission to improve global food security. Before that role, he co-founded a startup, incubated by Harvard Innovation Labs, that combined the power of cloud computing and machine learning with principles in decision-making science to expose users to new places and events. Whether it pertains to leisure activities, plant diseases, or customer lifetime value, Serg is passionate about providing the often-missing link between data and decision-making — and machine learning interpretation helps bridge this gap more robustly.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022