A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

Overview

Update 7/5/2021

Note that for VerSe dataset partially visible vertebrae at the top or bottom of the scan (or both) were not annotated, while CTSpine1K annotated them, which caused the situation that in our previous-version paper the reported dice value on VerSe dataset is much lower than on CTSpine1K dataset (0.619 VS 0.840). Therefore, we annotated all visible vertebrea (see figure below) and recalculated the metrics(0.766 VS 0.840).

We have updated our paper on arxiv and uploaded the completed annotations for VerSe dataset to Google drive Google drive and Baiduyun (password:send email to [email protected]). label

Besides, we updated a more specific biconcave fracture case on Figure 1(F).

Update 6/11/2021

We upload the Path.csv to clarify the CT positions we used for COLONOG dataset and HNSCC-3DCT-RT dataset, and delete the dicom2nii.py file. We also upload the original CT images to Baiduyun (password:send email to [email protected])

Introduction for the CTSpine1K dataset

To advance the research in spinal image analysis, we hereby present a large-scale and comprehensive dataset: CTSpine1K. To build a comprehensive spine dataset that replicates practical appearance variations, we curate CTSpine1K from the following four open sources, totalling 1,005 CT volumes (over 500,000 labeled slices and over 11,000 vertebrae) of diverse appearance variations.

*COLONOG. This sub-dataset comes from the CT COLONOGRAPHY dataset related to a CT colonography trial12. We randomly select one of the two positions (we open the code for selecting them, dicom2nii.py), which have similar information, of each patient for our dataset . There are 825 CT scans and are in Digital Imaging and Communication in Medicine (DICOM) format.

*HNSCC-3DCT-RT. This sub-dataset contains three dimensional (3D) high-resolution fan-beam CT scans collected during pre-treatment, mid-treatment, and post-treatment using a Siemens 16-slice CT scanner with the standard clinical protocol for head-and-neck squamous cell carcinoma (HNSCC) patients13. These images are in DICOM format.

*MSD T10. This sub-dataset comes from the 10th Medical Segmentation Decathlon14. To attain more slices containing the spine, we select the task03_liver dataset consisting of 201 cases. These images are in Neuroimaging Informatics Technology Initiative (NIfTI) format (https://nifti.nimh.nih.gov/nifti-1).

*COVID-19. This sub-dataset consists of non-enhanced chest CTs from 632 patients with COVID-19 infections. The images were acquired at the point of care in an outbreak setting from patients with Reverse Transcription Polymerase Chain Reaction(RT-PCR) confirmation for the presence of SARS-CoV-215. We pick 40 scans with the images stored in NIfTI format.

We reformat all DICOM images to NIfTI to simplify data processing and de-identify images, meeting the institutional review board (IRB) policies of contributing sites. More details for those sub-datasets could be found in12–15. All existing sub-datasets are under Creative Commons license CC-BY-NC-SA and we will keep the license unchanged. It should be noted that for sub-dataset task03_liver and sub-dataset COVID-19, we only choose a part of cases from them, and in all these data sources, we exclude those cases of very low quality. The overview of our dataset and the thorough comparison with the VerSe Challenge dataset (We only chose those samples which are not cropped) can be seen in Table 1.

spine1K situation

For more information about CTSpine1K dataset, please read the following paper. Please also cite this paper if you are using CTSpine1K dataset for your research.

Yang Deng, Ce Wang, Yuan Hui, et al. CtSpine1k: A large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv preprint arXiv:2105.14711 (2021). 

Downloading the CTSpine1K Dataset

The original images could be downloaded from correspongding URL above.

The segmentation masks and the pre-trained model are on Google drive or Baiduyun (password:send email to [email protected])

Annotation pipeline with nnUnet

Follow https://github.com/MIC-DKFZ/nnUNet/commit/058b695d61d34dda7f79cd36ab950a5d3e031653 to set and use nnUnet. The specific usage we here could be seen in ReadMe.md file. Our annotation pipeline is presented in figure 2 below. annotataion

Benchmarking results

The benchmarking results are shown in Table 2. table

Acknowledgement

Thank Febian's nnUnet and we appreciate the open-source sub-datasets we used.

Thank Jianji Wang and Guoxin Fan(MD) for their help in Fig.1(F)

Please feel free to email [email protected] if you have any question.

Owner
ICT.MIRACLE lab
The Medical Imaging, Robotics, Analytical Computing Laboratory & Engineering (MIRACLE) group
ICT.MIRACLE lab
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022