A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

Overview

Update 7/5/2021

Note that for VerSe dataset partially visible vertebrae at the top or bottom of the scan (or both) were not annotated, while CTSpine1K annotated them, which caused the situation that in our previous-version paper the reported dice value on VerSe dataset is much lower than on CTSpine1K dataset (0.619 VS 0.840). Therefore, we annotated all visible vertebrea (see figure below) and recalculated the metrics(0.766 VS 0.840).

We have updated our paper on arxiv and uploaded the completed annotations for VerSe dataset to Google drive Google drive and Baiduyun (password:send email to [email protected]). label

Besides, we updated a more specific biconcave fracture case on Figure 1(F).

Update 6/11/2021

We upload the Path.csv to clarify the CT positions we used for COLONOG dataset and HNSCC-3DCT-RT dataset, and delete the dicom2nii.py file. We also upload the original CT images to Baiduyun (password:send email to [email protected])

Introduction for the CTSpine1K dataset

To advance the research in spinal image analysis, we hereby present a large-scale and comprehensive dataset: CTSpine1K. To build a comprehensive spine dataset that replicates practical appearance variations, we curate CTSpine1K from the following four open sources, totalling 1,005 CT volumes (over 500,000 labeled slices and over 11,000 vertebrae) of diverse appearance variations.

*COLONOG. This sub-dataset comes from the CT COLONOGRAPHY dataset related to a CT colonography trial12. We randomly select one of the two positions (we open the code for selecting them, dicom2nii.py), which have similar information, of each patient for our dataset . There are 825 CT scans and are in Digital Imaging and Communication in Medicine (DICOM) format.

*HNSCC-3DCT-RT. This sub-dataset contains three dimensional (3D) high-resolution fan-beam CT scans collected during pre-treatment, mid-treatment, and post-treatment using a Siemens 16-slice CT scanner with the standard clinical protocol for head-and-neck squamous cell carcinoma (HNSCC) patients13. These images are in DICOM format.

*MSD T10. This sub-dataset comes from the 10th Medical Segmentation Decathlon14. To attain more slices containing the spine, we select the task03_liver dataset consisting of 201 cases. These images are in Neuroimaging Informatics Technology Initiative (NIfTI) format (https://nifti.nimh.nih.gov/nifti-1).

*COVID-19. This sub-dataset consists of non-enhanced chest CTs from 632 patients with COVID-19 infections. The images were acquired at the point of care in an outbreak setting from patients with Reverse Transcription Polymerase Chain Reaction(RT-PCR) confirmation for the presence of SARS-CoV-215. We pick 40 scans with the images stored in NIfTI format.

We reformat all DICOM images to NIfTI to simplify data processing and de-identify images, meeting the institutional review board (IRB) policies of contributing sites. More details for those sub-datasets could be found in12–15. All existing sub-datasets are under Creative Commons license CC-BY-NC-SA and we will keep the license unchanged. It should be noted that for sub-dataset task03_liver and sub-dataset COVID-19, we only choose a part of cases from them, and in all these data sources, we exclude those cases of very low quality. The overview of our dataset and the thorough comparison with the VerSe Challenge dataset (We only chose those samples which are not cropped) can be seen in Table 1.

spine1K situation

For more information about CTSpine1K dataset, please read the following paper. Please also cite this paper if you are using CTSpine1K dataset for your research.

Yang Deng, Ce Wang, Yuan Hui, et al. CtSpine1k: A large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv preprint arXiv:2105.14711 (2021). 

Downloading the CTSpine1K Dataset

The original images could be downloaded from correspongding URL above.

The segmentation masks and the pre-trained model are on Google drive or Baiduyun (password:send email to [email protected])

Annotation pipeline with nnUnet

Follow https://github.com/MIC-DKFZ/nnUNet/commit/058b695d61d34dda7f79cd36ab950a5d3e031653 to set and use nnUnet. The specific usage we here could be seen in ReadMe.md file. Our annotation pipeline is presented in figure 2 below. annotataion

Benchmarking results

The benchmarking results are shown in Table 2. table

Acknowledgement

Thank Febian's nnUnet and we appreciate the open-source sub-datasets we used.

Thank Jianji Wang and Guoxin Fan(MD) for their help in Fig.1(F)

Please feel free to email [email protected] if you have any question.

Owner
ICT.MIRACLE lab
The Medical Imaging, Robotics, Analytical Computing Laboratory & Engineering (MIRACLE) group
ICT.MIRACLE lab
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022