A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

Overview

Update 7/5/2021

Note that for VerSe dataset partially visible vertebrae at the top or bottom of the scan (or both) were not annotated, while CTSpine1K annotated them, which caused the situation that in our previous-version paper the reported dice value on VerSe dataset is much lower than on CTSpine1K dataset (0.619 VS 0.840). Therefore, we annotated all visible vertebrea (see figure below) and recalculated the metrics(0.766 VS 0.840).

We have updated our paper on arxiv and uploaded the completed annotations for VerSe dataset to Google drive Google drive and Baiduyun (password:send email to [email protected]). label

Besides, we updated a more specific biconcave fracture case on Figure 1(F).

Update 6/11/2021

We upload the Path.csv to clarify the CT positions we used for COLONOG dataset and HNSCC-3DCT-RT dataset, and delete the dicom2nii.py file. We also upload the original CT images to Baiduyun (password:send email to [email protected])

Introduction for the CTSpine1K dataset

To advance the research in spinal image analysis, we hereby present a large-scale and comprehensive dataset: CTSpine1K. To build a comprehensive spine dataset that replicates practical appearance variations, we curate CTSpine1K from the following four open sources, totalling 1,005 CT volumes (over 500,000 labeled slices and over 11,000 vertebrae) of diverse appearance variations.

*COLONOG. This sub-dataset comes from the CT COLONOGRAPHY dataset related to a CT colonography trial12. We randomly select one of the two positions (we open the code for selecting them, dicom2nii.py), which have similar information, of each patient for our dataset . There are 825 CT scans and are in Digital Imaging and Communication in Medicine (DICOM) format.

*HNSCC-3DCT-RT. This sub-dataset contains three dimensional (3D) high-resolution fan-beam CT scans collected during pre-treatment, mid-treatment, and post-treatment using a Siemens 16-slice CT scanner with the standard clinical protocol for head-and-neck squamous cell carcinoma (HNSCC) patients13. These images are in DICOM format.

*MSD T10. This sub-dataset comes from the 10th Medical Segmentation Decathlon14. To attain more slices containing the spine, we select the task03_liver dataset consisting of 201 cases. These images are in Neuroimaging Informatics Technology Initiative (NIfTI) format (https://nifti.nimh.nih.gov/nifti-1).

*COVID-19. This sub-dataset consists of non-enhanced chest CTs from 632 patients with COVID-19 infections. The images were acquired at the point of care in an outbreak setting from patients with Reverse Transcription Polymerase Chain Reaction(RT-PCR) confirmation for the presence of SARS-CoV-215. We pick 40 scans with the images stored in NIfTI format.

We reformat all DICOM images to NIfTI to simplify data processing and de-identify images, meeting the institutional review board (IRB) policies of contributing sites. More details for those sub-datasets could be found in12–15. All existing sub-datasets are under Creative Commons license CC-BY-NC-SA and we will keep the license unchanged. It should be noted that for sub-dataset task03_liver and sub-dataset COVID-19, we only choose a part of cases from them, and in all these data sources, we exclude those cases of very low quality. The overview of our dataset and the thorough comparison with the VerSe Challenge dataset (We only chose those samples which are not cropped) can be seen in Table 1.

spine1K situation

For more information about CTSpine1K dataset, please read the following paper. Please also cite this paper if you are using CTSpine1K dataset for your research.

Yang Deng, Ce Wang, Yuan Hui, et al. CtSpine1k: A large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv preprint arXiv:2105.14711 (2021). 

Downloading the CTSpine1K Dataset

The original images could be downloaded from correspongding URL above.

The segmentation masks and the pre-trained model are on Google drive or Baiduyun (password:send email to [email protected])

Annotation pipeline with nnUnet

Follow https://github.com/MIC-DKFZ/nnUNet/commit/058b695d61d34dda7f79cd36ab950a5d3e031653 to set and use nnUnet. The specific usage we here could be seen in ReadMe.md file. Our annotation pipeline is presented in figure 2 below. annotataion

Benchmarking results

The benchmarking results are shown in Table 2. table

Acknowledgement

Thank Febian's nnUnet and we appreciate the open-source sub-datasets we used.

Thank Jianji Wang and Guoxin Fan(MD) for their help in Fig.1(F)

Please feel free to email [email protected] if you have any question.

Owner
ICT.MIRACLE lab
The Medical Imaging, Robotics, Analytical Computing Laboratory & Engineering (MIRACLE) group
ICT.MIRACLE lab
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022