PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

Overview

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

The implementation is based on SIGGRAPH Aisa'20.

Dependencies

  • Python 3.7
  • Ubuntu 18.04 (The system should run on other Ubuntu versions and Windows, however not tested.)
  • RBDL: Rigid Body Dynamics Library (https://rbdl.github.io/)
  • PyTorch 1.8.1 with GPU support (cuda 10.2 is tested to work)
  • For other python packages, please check requirements.txt

Installation

  • Download and install Python binded RBDL from https://github.com/rbdl/rbdl

  • Install Pytorch 1.8.1 with GPU support (https://pytorch.org/) (other versions should also work but not tested)

  • Install python packages by:

      pip install -r requirements.txt
    

How to Run on the Sample Data

We provide a sample data taken from DeepCap dataset CVPR'20. To run the code on the sample data, first go to physcap_release directory and run:

python pipeline.py --contact_estimation 0 --floor_known 1 --floor_frame  data/floor_frame.npy  --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename data/sample.motion --contact_path data/sample_contacts.npy --stationary_path data/sample_stationary.npy --save_path './results/'

To visualize the prediction, run:

python visualizer.py --q_path ./results/PhyCap_q.npy

To run PhysCap with its full functionality, the floor position should be given as 4x4 matrix (rotation and translation). In case you don't know the floor position, you can still run PhysCap with "--floor_known 0" option:

python pipeline.py --contact_estimation 0 --floor_known 0  --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename data/sample.motion --save_path './results/'

How to Run on Your Data

  1. Run Stage I:

    we employ VNect for the stage I of PhysCap pipeline. Please install the VNect C++ library and use its prediction to run PhysCap. When running VNect, please replace "default.skeleton" with "physcap.skeleton" in asset folder that is compatible with PhysCap skeletion definition (physcap.urdf). After running VNect on your sequence, the predictions (motion.motion and ddd.mdd) will be saved under the specified folder. For this example, we assuem the predictions are saved under "data/VNect_data" folder.

  2. Run Stage II and III:

    First, run the following command to apply preprocessing on the 2D keypoints:

     python process_2Ds.py --input ./data/VNect_data/ddd.mdd --output ./data/VNect_data/ --smoothing 0
    

    The processed keypoints will be stored as "vnect_2ds.npy". Then run the following command to run Stage II and III:

     python pipeline.py --contact_estimation 1 --vnect_2d_path ./data/VNect_data/vnect_2ds.npy --save_path './results/' --floor_known 0 --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename ./data/VNect_data/motion.motion --contact_path results/contacts.npy --stationary_path results/stationary.npy  
    

    In case you know the exact floor position, you can use the options --floor_known 1 --floor_frame /Path/To/FloorFrameFile

    To visualize the results, run:

     python visualizer.py --q_path ./results/PhyCap_q.npy
    

License Terms

Permission is hereby granted, free of charge, to any person or company obtaining a copy of this software and associated documentation files (the "Software") from the copyright holders to use the Software for any non-commercial purpose. Publication, redistribution and (re)selling of the software, of modifications, extensions, and derivates of it, and of other software containing portions of the licensed Software, are not permitted. The Copyright holder is permitted to publically disclose and advertise the use of the software by any licensee.

Packaging or distributing parts or whole of the provided software (including code, models and data) as is or as part of other software is prohibited. Commercial use of parts or whole of the provided software (including code, models and data) is strictly prohibited. Using the provided software for promotion of a commercial entity or product, or in any other manner which directly or indirectly results in commercial gains is strictly prohibited.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Citation

If the code is used, the licesnee is required to cite the use of VNect and the following publication in any documentation or publication that results from the work:

@article{
	PhysCapTOG2020,
	author = {Shimada, Soshi and Golyanik, Vladislav and Xu, Weipeng and Theobalt, Christian},
	title = {PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time},
	journal = {ACM Transactions on Graphics}, 
	month = {dec},
	volume = {39},
	number = {6}, 
	articleno = {235},
	year = {2020}, 
	publisher = {ACM}, 
	keywords = {physics-based, 3D, motion capture, real time}
} 
Owner
soratobtai
soratobtai
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022